Metamath Proof Explorer


Definition df-diag

Description: Define the diagonal functor, which is the functor C --> ( D Func C ) whose object part is x e. C |-> ( y e. D |-> x ) . The value of the functor at an object x is the constant functor which maps all objects in D to x and all morphisms to 1 ( x ) . The morphism part is a natural transformation between these functors, which takes f : x --> y to the natural transformation with every component equal to f . (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion df-diag
|- DiagFunc = ( c e. Cat , d e. Cat |-> ( <. c , d >. curryF ( c 1stF d ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdiag
 |-  DiagFunc
1 vc
 |-  c
2 ccat
 |-  Cat
3 vd
 |-  d
4 1 cv
 |-  c
5 3 cv
 |-  d
6 4 5 cop
 |-  <. c , d >.
7 ccurf
 |-  curryF
8 c1stf
 |-  1stF
9 4 5 8 co
 |-  ( c 1stF d )
10 6 9 7 co
 |-  ( <. c , d >. curryF ( c 1stF d ) )
11 1 3 2 2 10 cmpo
 |-  ( c e. Cat , d e. Cat |-> ( <. c , d >. curryF ( c 1stF d ) ) )
12 0 11 wceq
 |-  DiagFunc = ( c e. Cat , d e. Cat |-> ( <. c , d >. curryF ( c 1stF d ) ) )