Step |
Hyp |
Ref |
Expression |
0 |
|
cdib |
|- DIsoB |
1 |
|
vk |
|- k |
2 |
|
cvv |
|- _V |
3 |
|
vw |
|- w |
4 |
|
clh |
|- LHyp |
5 |
1
|
cv |
|- k |
6 |
5 4
|
cfv |
|- ( LHyp ` k ) |
7 |
|
vx |
|- x |
8 |
|
cdia |
|- DIsoA |
9 |
5 8
|
cfv |
|- ( DIsoA ` k ) |
10 |
3
|
cv |
|- w |
11 |
10 9
|
cfv |
|- ( ( DIsoA ` k ) ` w ) |
12 |
11
|
cdm |
|- dom ( ( DIsoA ` k ) ` w ) |
13 |
7
|
cv |
|- x |
14 |
13 11
|
cfv |
|- ( ( ( DIsoA ` k ) ` w ) ` x ) |
15 |
|
vf |
|- f |
16 |
|
cltrn |
|- LTrn |
17 |
5 16
|
cfv |
|- ( LTrn ` k ) |
18 |
10 17
|
cfv |
|- ( ( LTrn ` k ) ` w ) |
19 |
|
cid |
|- _I |
20 |
|
cbs |
|- Base |
21 |
5 20
|
cfv |
|- ( Base ` k ) |
22 |
19 21
|
cres |
|- ( _I |` ( Base ` k ) ) |
23 |
15 18 22
|
cmpt |
|- ( f e. ( ( LTrn ` k ) ` w ) |-> ( _I |` ( Base ` k ) ) ) |
24 |
23
|
csn |
|- { ( f e. ( ( LTrn ` k ) ` w ) |-> ( _I |` ( Base ` k ) ) ) } |
25 |
14 24
|
cxp |
|- ( ( ( ( DIsoA ` k ) ` w ) ` x ) X. { ( f e. ( ( LTrn ` k ) ` w ) |-> ( _I |` ( Base ` k ) ) ) } ) |
26 |
7 12 25
|
cmpt |
|- ( x e. dom ( ( DIsoA ` k ) ` w ) |-> ( ( ( ( DIsoA ` k ) ` w ) ` x ) X. { ( f e. ( ( LTrn ` k ) ` w ) |-> ( _I |` ( Base ` k ) ) ) } ) ) |
27 |
3 6 26
|
cmpt |
|- ( w e. ( LHyp ` k ) |-> ( x e. dom ( ( DIsoA ` k ) ` w ) |-> ( ( ( ( DIsoA ` k ) ` w ) ` x ) X. { ( f e. ( ( LTrn ` k ) ` w ) |-> ( _I |` ( Base ` k ) ) ) } ) ) ) |
28 |
1 2 27
|
cmpt |
|- ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. dom ( ( DIsoA ` k ) ` w ) |-> ( ( ( ( DIsoA ` k ) ` w ) ` x ) X. { ( f e. ( ( LTrn ` k ) ` w ) |-> ( _I |` ( Base ` k ) ) ) } ) ) ) ) |
29 |
0 28
|
wceq |
|- DIsoB = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. dom ( ( DIsoA ` k ) ` w ) |-> ( ( ( ( DIsoA ` k ) ` w ) ` x ) X. { ( f e. ( ( LTrn ` k ) ` w ) |-> ( _I |` ( Base ` k ) ) ) } ) ) ) ) |