Step |
Hyp |
Ref |
Expression |
0 |
|
cdib |
⊢ DIsoB |
1 |
|
vk |
⊢ 𝑘 |
2 |
|
cvv |
⊢ V |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
clh |
⊢ LHyp |
5 |
1
|
cv |
⊢ 𝑘 |
6 |
5 4
|
cfv |
⊢ ( LHyp ‘ 𝑘 ) |
7 |
|
vx |
⊢ 𝑥 |
8 |
|
cdia |
⊢ DIsoA |
9 |
5 8
|
cfv |
⊢ ( DIsoA ‘ 𝑘 ) |
10 |
3
|
cv |
⊢ 𝑤 |
11 |
10 9
|
cfv |
⊢ ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) |
12 |
11
|
cdm |
⊢ dom ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) |
13 |
7
|
cv |
⊢ 𝑥 |
14 |
13 11
|
cfv |
⊢ ( ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) |
15 |
|
vf |
⊢ 𝑓 |
16 |
|
cltrn |
⊢ LTrn |
17 |
5 16
|
cfv |
⊢ ( LTrn ‘ 𝑘 ) |
18 |
10 17
|
cfv |
⊢ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) |
19 |
|
cid |
⊢ I |
20 |
|
cbs |
⊢ Base |
21 |
5 20
|
cfv |
⊢ ( Base ‘ 𝑘 ) |
22 |
19 21
|
cres |
⊢ ( I ↾ ( Base ‘ 𝑘 ) ) |
23 |
15 18 22
|
cmpt |
⊢ ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( I ↾ ( Base ‘ 𝑘 ) ) ) |
24 |
23
|
csn |
⊢ { ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( I ↾ ( Base ‘ 𝑘 ) ) ) } |
25 |
14 24
|
cxp |
⊢ ( ( ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( I ↾ ( Base ‘ 𝑘 ) ) ) } ) |
26 |
7 12 25
|
cmpt |
⊢ ( 𝑥 ∈ dom ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( I ↾ ( Base ‘ 𝑘 ) ) ) } ) ) |
27 |
3 6 26
|
cmpt |
⊢ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ dom ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( I ↾ ( Base ‘ 𝑘 ) ) ) } ) ) ) |
28 |
1 2 27
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ dom ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( I ↾ ( Base ‘ 𝑘 ) ) ) } ) ) ) ) |
29 |
0 28
|
wceq |
⊢ DIsoB = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ dom ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( I ↾ ( Base ‘ 𝑘 ) ) ) } ) ) ) ) |