Metamath Proof Explorer


Definition df-dim

Description: Define the dimension of a vector space as the cardinality of its bases. Note that by lvecdim , all bases are equinumerous. (Contributed by Thierry Arnoux, 6-May-2023)

Ref Expression
Assertion df-dim
|- dim = ( f e. _V |-> U. ( # " ( LBasis ` f ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cldim
 |-  dim
1 vf
 |-  f
2 cvv
 |-  _V
3 chash
 |-  #
4 clbs
 |-  LBasis
5 1 cv
 |-  f
6 5 4 cfv
 |-  ( LBasis ` f )
7 3 6 cima
 |-  ( # " ( LBasis ` f ) )
8 7 cuni
 |-  U. ( # " ( LBasis ` f ) )
9 1 2 8 cmpt
 |-  ( f e. _V |-> U. ( # " ( LBasis ` f ) ) )
10 0 9 wceq
 |-  dim = ( f e. _V |-> U. ( # " ( LBasis ` f ) ) )