Step |
Hyp |
Ref |
Expression |
1 |
|
dimval.1 |
|- J = ( LBasis ` F ) |
2 |
|
elex |
|- ( F e. LVec -> F e. _V ) |
3 |
|
fveq2 |
|- ( f = F -> ( LBasis ` f ) = ( LBasis ` F ) ) |
4 |
3 1
|
eqtr4di |
|- ( f = F -> ( LBasis ` f ) = J ) |
5 |
4
|
imaeq2d |
|- ( f = F -> ( # " ( LBasis ` f ) ) = ( # " J ) ) |
6 |
5
|
unieqd |
|- ( f = F -> U. ( # " ( LBasis ` f ) ) = U. ( # " J ) ) |
7 |
|
df-dim |
|- dim = ( f e. _V |-> U. ( # " ( LBasis ` f ) ) ) |
8 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
9 |
|
ffun |
|- ( # : _V --> ( NN0 u. { +oo } ) -> Fun # ) |
10 |
1
|
fvexi |
|- J e. _V |
11 |
10
|
funimaex |
|- ( Fun # -> ( # " J ) e. _V ) |
12 |
8 9 11
|
mp2b |
|- ( # " J ) e. _V |
13 |
12
|
uniex |
|- U. ( # " J ) e. _V |
14 |
6 7 13
|
fvmpt |
|- ( F e. _V -> ( dim ` F ) = U. ( # " J ) ) |
15 |
2 14
|
syl |
|- ( F e. LVec -> ( dim ` F ) = U. ( # " J ) ) |
16 |
15
|
adantr |
|- ( ( F e. LVec /\ S e. J ) -> ( dim ` F ) = U. ( # " J ) ) |
17 |
1
|
lvecdim |
|- ( ( F e. LVec /\ S e. J /\ t e. J ) -> S ~~ t ) |
18 |
17
|
ad4ant124 |
|- ( ( ( ( F e. LVec /\ S e. J ) /\ x e. ( # " J ) ) /\ t e. J ) -> S ~~ t ) |
19 |
|
hasheni |
|- ( S ~~ t -> ( # ` S ) = ( # ` t ) ) |
20 |
18 19
|
syl |
|- ( ( ( ( F e. LVec /\ S e. J ) /\ x e. ( # " J ) ) /\ t e. J ) -> ( # ` S ) = ( # ` t ) ) |
21 |
20
|
adantr |
|- ( ( ( ( ( F e. LVec /\ S e. J ) /\ x e. ( # " J ) ) /\ t e. J ) /\ ( # ` t ) = x ) -> ( # ` S ) = ( # ` t ) ) |
22 |
|
simpr |
|- ( ( ( ( ( F e. LVec /\ S e. J ) /\ x e. ( # " J ) ) /\ t e. J ) /\ ( # ` t ) = x ) -> ( # ` t ) = x ) |
23 |
21 22
|
eqtr2d |
|- ( ( ( ( ( F e. LVec /\ S e. J ) /\ x e. ( # " J ) ) /\ t e. J ) /\ ( # ` t ) = x ) -> x = ( # ` S ) ) |
24 |
8 9
|
ax-mp |
|- Fun # |
25 |
|
fvelima |
|- ( ( Fun # /\ x e. ( # " J ) ) -> E. t e. J ( # ` t ) = x ) |
26 |
24 25
|
mpan |
|- ( x e. ( # " J ) -> E. t e. J ( # ` t ) = x ) |
27 |
26
|
adantl |
|- ( ( ( F e. LVec /\ S e. J ) /\ x e. ( # " J ) ) -> E. t e. J ( # ` t ) = x ) |
28 |
23 27
|
r19.29a |
|- ( ( ( F e. LVec /\ S e. J ) /\ x e. ( # " J ) ) -> x = ( # ` S ) ) |
29 |
28
|
ralrimiva |
|- ( ( F e. LVec /\ S e. J ) -> A. x e. ( # " J ) x = ( # ` S ) ) |
30 |
|
ne0i |
|- ( S e. J -> J =/= (/) ) |
31 |
30
|
adantl |
|- ( ( F e. LVec /\ S e. J ) -> J =/= (/) ) |
32 |
|
ffn |
|- ( # : _V --> ( NN0 u. { +oo } ) -> # Fn _V ) |
33 |
8 32
|
ax-mp |
|- # Fn _V |
34 |
|
ssv |
|- J C_ _V |
35 |
|
fnimaeq0 |
|- ( ( # Fn _V /\ J C_ _V ) -> ( ( # " J ) = (/) <-> J = (/) ) ) |
36 |
33 34 35
|
mp2an |
|- ( ( # " J ) = (/) <-> J = (/) ) |
37 |
36
|
necon3bii |
|- ( ( # " J ) =/= (/) <-> J =/= (/) ) |
38 |
31 37
|
sylibr |
|- ( ( F e. LVec /\ S e. J ) -> ( # " J ) =/= (/) ) |
39 |
|
eqsn |
|- ( ( # " J ) =/= (/) -> ( ( # " J ) = { ( # ` S ) } <-> A. x e. ( # " J ) x = ( # ` S ) ) ) |
40 |
38 39
|
syl |
|- ( ( F e. LVec /\ S e. J ) -> ( ( # " J ) = { ( # ` S ) } <-> A. x e. ( # " J ) x = ( # ` S ) ) ) |
41 |
29 40
|
mpbird |
|- ( ( F e. LVec /\ S e. J ) -> ( # " J ) = { ( # ` S ) } ) |
42 |
41
|
unieqd |
|- ( ( F e. LVec /\ S e. J ) -> U. ( # " J ) = U. { ( # ` S ) } ) |
43 |
|
fvex |
|- ( # ` S ) e. _V |
44 |
43
|
unisn |
|- U. { ( # ` S ) } = ( # ` S ) |
45 |
44
|
a1i |
|- ( ( F e. LVec /\ S e. J ) -> U. { ( # ` S ) } = ( # ` S ) ) |
46 |
16 42 45
|
3eqtrd |
|- ( ( F e. LVec /\ S e. J ) -> ( dim ` F ) = ( # ` S ) ) |