Step |
Hyp |
Ref |
Expression |
1 |
|
dimval.1 |
⊢ 𝐽 = ( LBasis ‘ 𝐹 ) |
2 |
|
elex |
⊢ ( 𝐹 ∈ LVec → 𝐹 ∈ V ) |
3 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( LBasis ‘ 𝑓 ) = ( LBasis ‘ 𝐹 ) ) |
4 |
3 1
|
eqtr4di |
⊢ ( 𝑓 = 𝐹 → ( LBasis ‘ 𝑓 ) = 𝐽 ) |
5 |
4
|
imaeq2d |
⊢ ( 𝑓 = 𝐹 → ( ♯ “ ( LBasis ‘ 𝑓 ) ) = ( ♯ “ 𝐽 ) ) |
6 |
5
|
unieqd |
⊢ ( 𝑓 = 𝐹 → ∪ ( ♯ “ ( LBasis ‘ 𝑓 ) ) = ∪ ( ♯ “ 𝐽 ) ) |
7 |
|
df-dim |
⊢ dim = ( 𝑓 ∈ V ↦ ∪ ( ♯ “ ( LBasis ‘ 𝑓 ) ) ) |
8 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
9 |
|
ffun |
⊢ ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → Fun ♯ ) |
10 |
1
|
fvexi |
⊢ 𝐽 ∈ V |
11 |
10
|
funimaex |
⊢ ( Fun ♯ → ( ♯ “ 𝐽 ) ∈ V ) |
12 |
8 9 11
|
mp2b |
⊢ ( ♯ “ 𝐽 ) ∈ V |
13 |
12
|
uniex |
⊢ ∪ ( ♯ “ 𝐽 ) ∈ V |
14 |
6 7 13
|
fvmpt |
⊢ ( 𝐹 ∈ V → ( dim ‘ 𝐹 ) = ∪ ( ♯ “ 𝐽 ) ) |
15 |
2 14
|
syl |
⊢ ( 𝐹 ∈ LVec → ( dim ‘ 𝐹 ) = ∪ ( ♯ “ 𝐽 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ) → ( dim ‘ 𝐹 ) = ∪ ( ♯ “ 𝐽 ) ) |
17 |
1
|
lvecdim |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑡 ∈ 𝐽 ) → 𝑆 ≈ 𝑡 ) |
18 |
17
|
ad4ant124 |
⊢ ( ( ( ( 𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ♯ “ 𝐽 ) ) ∧ 𝑡 ∈ 𝐽 ) → 𝑆 ≈ 𝑡 ) |
19 |
|
hasheni |
⊢ ( 𝑆 ≈ 𝑡 → ( ♯ ‘ 𝑆 ) = ( ♯ ‘ 𝑡 ) ) |
20 |
18 19
|
syl |
⊢ ( ( ( ( 𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ♯ “ 𝐽 ) ) ∧ 𝑡 ∈ 𝐽 ) → ( ♯ ‘ 𝑆 ) = ( ♯ ‘ 𝑡 ) ) |
21 |
20
|
adantr |
⊢ ( ( ( ( ( 𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ♯ “ 𝐽 ) ) ∧ 𝑡 ∈ 𝐽 ) ∧ ( ♯ ‘ 𝑡 ) = 𝑥 ) → ( ♯ ‘ 𝑆 ) = ( ♯ ‘ 𝑡 ) ) |
22 |
|
simpr |
⊢ ( ( ( ( ( 𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ♯ “ 𝐽 ) ) ∧ 𝑡 ∈ 𝐽 ) ∧ ( ♯ ‘ 𝑡 ) = 𝑥 ) → ( ♯ ‘ 𝑡 ) = 𝑥 ) |
23 |
21 22
|
eqtr2d |
⊢ ( ( ( ( ( 𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ♯ “ 𝐽 ) ) ∧ 𝑡 ∈ 𝐽 ) ∧ ( ♯ ‘ 𝑡 ) = 𝑥 ) → 𝑥 = ( ♯ ‘ 𝑆 ) ) |
24 |
8 9
|
ax-mp |
⊢ Fun ♯ |
25 |
|
fvelima |
⊢ ( ( Fun ♯ ∧ 𝑥 ∈ ( ♯ “ 𝐽 ) ) → ∃ 𝑡 ∈ 𝐽 ( ♯ ‘ 𝑡 ) = 𝑥 ) |
26 |
24 25
|
mpan |
⊢ ( 𝑥 ∈ ( ♯ “ 𝐽 ) → ∃ 𝑡 ∈ 𝐽 ( ♯ ‘ 𝑡 ) = 𝑥 ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ♯ “ 𝐽 ) ) → ∃ 𝑡 ∈ 𝐽 ( ♯ ‘ 𝑡 ) = 𝑥 ) |
28 |
23 27
|
r19.29a |
⊢ ( ( ( 𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ♯ “ 𝐽 ) ) → 𝑥 = ( ♯ ‘ 𝑆 ) ) |
29 |
28
|
ralrimiva |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ) → ∀ 𝑥 ∈ ( ♯ “ 𝐽 ) 𝑥 = ( ♯ ‘ 𝑆 ) ) |
30 |
|
ne0i |
⊢ ( 𝑆 ∈ 𝐽 → 𝐽 ≠ ∅ ) |
31 |
30
|
adantl |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ) → 𝐽 ≠ ∅ ) |
32 |
|
ffn |
⊢ ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → ♯ Fn V ) |
33 |
8 32
|
ax-mp |
⊢ ♯ Fn V |
34 |
|
ssv |
⊢ 𝐽 ⊆ V |
35 |
|
fnimaeq0 |
⊢ ( ( ♯ Fn V ∧ 𝐽 ⊆ V ) → ( ( ♯ “ 𝐽 ) = ∅ ↔ 𝐽 = ∅ ) ) |
36 |
33 34 35
|
mp2an |
⊢ ( ( ♯ “ 𝐽 ) = ∅ ↔ 𝐽 = ∅ ) |
37 |
36
|
necon3bii |
⊢ ( ( ♯ “ 𝐽 ) ≠ ∅ ↔ 𝐽 ≠ ∅ ) |
38 |
31 37
|
sylibr |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ) → ( ♯ “ 𝐽 ) ≠ ∅ ) |
39 |
|
eqsn |
⊢ ( ( ♯ “ 𝐽 ) ≠ ∅ → ( ( ♯ “ 𝐽 ) = { ( ♯ ‘ 𝑆 ) } ↔ ∀ 𝑥 ∈ ( ♯ “ 𝐽 ) 𝑥 = ( ♯ ‘ 𝑆 ) ) ) |
40 |
38 39
|
syl |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ) → ( ( ♯ “ 𝐽 ) = { ( ♯ ‘ 𝑆 ) } ↔ ∀ 𝑥 ∈ ( ♯ “ 𝐽 ) 𝑥 = ( ♯ ‘ 𝑆 ) ) ) |
41 |
29 40
|
mpbird |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ) → ( ♯ “ 𝐽 ) = { ( ♯ ‘ 𝑆 ) } ) |
42 |
41
|
unieqd |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ) → ∪ ( ♯ “ 𝐽 ) = ∪ { ( ♯ ‘ 𝑆 ) } ) |
43 |
|
fvex |
⊢ ( ♯ ‘ 𝑆 ) ∈ V |
44 |
43
|
unisn |
⊢ ∪ { ( ♯ ‘ 𝑆 ) } = ( ♯ ‘ 𝑆 ) |
45 |
44
|
a1i |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ) → ∪ { ( ♯ ‘ 𝑆 ) } = ( ♯ ‘ 𝑆 ) ) |
46 |
16 42 45
|
3eqtrd |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ) → ( dim ‘ 𝐹 ) = ( ♯ ‘ 𝑆 ) ) |