Metamath Proof Explorer


Definition df-dmqs

Description: Define the domain quotient predicate. (Read: the domain quotient of R is A .) If A and R are sets, the domain quotient binary relation and the domain quotient predicate are the same, see brdmqssqs . (Contributed by Peter Mazsa, 9-Aug-2021)

Ref Expression
Assertion df-dmqs
|- ( R DomainQs A <-> ( dom R /. R ) = A )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR
 |-  R
1 cA
 |-  A
2 1 0 wdmqs
 |-  R DomainQs A
3 0 cdm
 |-  dom R
4 3 0 cqs
 |-  ( dom R /. R )
5 4 1 wceq
 |-  ( dom R /. R ) = A
6 2 5 wb
 |-  ( R DomainQs A <-> ( dom R /. R ) = A )