Metamath Proof Explorer


Theorem brdmqssqs

Description: If A and R are sets, the domain quotient binary relation and the domain quotient predicate are the same. (Contributed by Peter Mazsa, 14-Aug-2021)

Ref Expression
Assertion brdmqssqs
|- ( ( A e. V /\ R e. W ) -> ( R DomainQss A <-> R DomainQs A ) )

Proof

Step Hyp Ref Expression
1 brdmqss
 |-  ( ( A e. V /\ R e. W ) -> ( R DomainQss A <-> ( dom R /. R ) = A ) )
2 df-dmqs
 |-  ( R DomainQs A <-> ( dom R /. R ) = A )
3 1 2 bitr4di
 |-  ( ( A e. V /\ R e. W ) -> ( R DomainQss A <-> R DomainQs A ) )