Description: The domain quotient binary relation. (Contributed by Peter Mazsa, 17-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | brdmqss | |- ( ( A e. V /\ R e. W ) -> ( R DomainQss A <-> ( dom R /. R ) = A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmqseq | |- ( x = R -> ( dom x /. x ) = ( dom R /. R ) ) |
|
2 | id | |- ( y = A -> y = A ) |
|
3 | 1 2 | eqeqan12d | |- ( ( x = R /\ y = A ) -> ( ( dom x /. x ) = y <-> ( dom R /. R ) = A ) ) |
4 | df-dmqss | |- DomainQss = { <. x , y >. | ( dom x /. x ) = y } |
|
5 | 3 4 | brabga | |- ( ( R e. W /\ A e. V ) -> ( R DomainQss A <-> ( dom R /. R ) = A ) ) |
6 | 5 | ancoms | |- ( ( A e. V /\ R e. W ) -> ( R DomainQss A <-> ( dom R /. R ) = A ) ) |