Description: The domain quotient binary relation. (Contributed by Peter Mazsa, 17-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | brdmqss | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑅 DomainQss 𝐴 ↔ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmqseq | ⊢ ( 𝑥 = 𝑅 → ( dom 𝑥 / 𝑥 ) = ( dom 𝑅 / 𝑅 ) ) | |
2 | id | ⊢ ( 𝑦 = 𝐴 → 𝑦 = 𝐴 ) | |
3 | 1 2 | eqeqan12d | ⊢ ( ( 𝑥 = 𝑅 ∧ 𝑦 = 𝐴 ) → ( ( dom 𝑥 / 𝑥 ) = 𝑦 ↔ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) |
4 | df-dmqss | ⊢ DomainQss = { 〈 𝑥 , 𝑦 〉 ∣ ( dom 𝑥 / 𝑥 ) = 𝑦 } | |
5 | 3 4 | brabga | ⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑅 DomainQss 𝐴 ↔ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) |
6 | 5 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑅 DomainQss 𝐴 ↔ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) |