Metamath Proof Explorer


Theorem brdmqss

Description: The domain quotient binary relation. (Contributed by Peter Mazsa, 17-Apr-2019)

Ref Expression
Assertion brdmqss ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 DomainQss 𝐴 ↔ ( dom 𝑅 / 𝑅 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 dmqseq ( 𝑥 = 𝑅 → ( dom 𝑥 / 𝑥 ) = ( dom 𝑅 / 𝑅 ) )
2 id ( 𝑦 = 𝐴𝑦 = 𝐴 )
3 1 2 eqeqan12d ( ( 𝑥 = 𝑅𝑦 = 𝐴 ) → ( ( dom 𝑥 / 𝑥 ) = 𝑦 ↔ ( dom 𝑅 / 𝑅 ) = 𝐴 ) )
4 df-dmqss DomainQss = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( dom 𝑥 / 𝑥 ) = 𝑦 }
5 3 4 brabga ( ( 𝑅𝑊𝐴𝑉 ) → ( 𝑅 DomainQss 𝐴 ↔ ( dom 𝑅 / 𝑅 ) = 𝐴 ) )
6 5 ancoms ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 DomainQss 𝐴 ↔ ( dom 𝑅 / 𝑅 ) = 𝐴 ) )