Metamath Proof Explorer


Theorem brdmqss

Description: The domain quotient binary relation. (Contributed by Peter Mazsa, 17-Apr-2019)

Ref Expression
Assertion brdmqss A V R W R DomainQss A dom R / R = A

Proof

Step Hyp Ref Expression
1 dmqseq x = R dom x / x = dom R / R
2 id y = A y = A
3 1 2 eqeqan12d x = R y = A dom x / x = y dom R / R = A
4 df-dmqss DomainQss = x y | dom x / x = y
5 3 4 brabga R W A V R DomainQss A dom R / R = A
6 5 ancoms A V R W R DomainQss A dom R / R = A