Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Domain quotients
brdmqss
Next ⟩
brdmqssqs
Metamath Proof Explorer
Ascii
Unicode
Theorem
brdmqss
Description:
The domain quotient binary relation.
(Contributed by
Peter Mazsa
, 17-Apr-2019)
Ref
Expression
Assertion
brdmqss
⊢
A
∈
V
∧
R
∈
W
→
R
DomainQss
A
↔
dom
⁡
R
/
R
=
A
Proof
Step
Hyp
Ref
Expression
1
dmqseq
⊢
x
=
R
→
dom
⁡
x
/
x
=
dom
⁡
R
/
R
2
id
⊢
y
=
A
→
y
=
A
3
1
2
eqeqan12d
⊢
x
=
R
∧
y
=
A
→
dom
⁡
x
/
x
=
y
↔
dom
⁡
R
/
R
=
A
4
df-dmqss
⊢
DomainQss
=
x
y
|
dom
⁡
x
/
x
=
y
5
3
4
brabga
⊢
R
∈
W
∧
A
∈
V
→
R
DomainQss
A
↔
dom
⁡
R
/
R
=
A
6
5
ancoms
⊢
A
∈
V
∧
R
∈
W
→
R
DomainQss
A
↔
dom
⁡
R
/
R
=
A