Description: Define the n -th derivative operator on functions on the complex numbers. This just iterates the derivative operation according to the last argument. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dvn | |- Dn = ( s e. ~P CC , f e. ( CC ^pm s ) |-> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdvn | |- Dn |
|
| 1 | vs | |- s |
|
| 2 | cc | |- CC |
|
| 3 | 2 | cpw | |- ~P CC |
| 4 | vf | |- f |
|
| 5 | cpm | |- ^pm |
|
| 6 | 1 | cv | |- s |
| 7 | 2 6 5 | co | |- ( CC ^pm s ) |
| 8 | cc0 | |- 0 |
|
| 9 | vx | |- x |
|
| 10 | cvv | |- _V |
|
| 11 | cdv | |- _D |
|
| 12 | 9 | cv | |- x |
| 13 | 6 12 11 | co | |- ( s _D x ) |
| 14 | 9 10 13 | cmpt | |- ( x e. _V |-> ( s _D x ) ) |
| 15 | c1st | |- 1st |
|
| 16 | 14 15 | ccom | |- ( ( x e. _V |-> ( s _D x ) ) o. 1st ) |
| 17 | cn0 | |- NN0 |
|
| 18 | 4 | cv | |- f |
| 19 | 18 | csn | |- { f } |
| 20 | 17 19 | cxp | |- ( NN0 X. { f } ) |
| 21 | 16 20 8 | cseq | |- seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) |
| 22 | 1 4 3 7 21 | cmpo | |- ( s e. ~P CC , f e. ( CC ^pm s ) |-> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) ) |
| 23 | 0 22 | wceq | |- Dn = ( s e. ~P CC , f e. ( CC ^pm s ) |-> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) ) |