Description: Define ring division. (Contributed by Mario Carneiro, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dvr | |- /r = ( r e. _V |-> ( x e. ( Base ` r ) , y e. ( Unit ` r ) |-> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdvr | |- /r |
|
| 1 | vr | |- r |
|
| 2 | cvv | |- _V |
|
| 3 | vx | |- x |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- r |
| 6 | 5 4 | cfv | |- ( Base ` r ) |
| 7 | vy | |- y |
|
| 8 | cui | |- Unit |
|
| 9 | 5 8 | cfv | |- ( Unit ` r ) |
| 10 | 3 | cv | |- x |
| 11 | cmulr | |- .r |
|
| 12 | 5 11 | cfv | |- ( .r ` r ) |
| 13 | cinvr | |- invr |
|
| 14 | 5 13 | cfv | |- ( invr ` r ) |
| 15 | 7 | cv | |- y |
| 16 | 15 14 | cfv | |- ( ( invr ` r ) ` y ) |
| 17 | 10 16 12 | co | |- ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) |
| 18 | 3 7 6 9 17 | cmpo | |- ( x e. ( Base ` r ) , y e. ( Unit ` r ) |-> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) ) |
| 19 | 1 2 18 | cmpt | |- ( r e. _V |-> ( x e. ( Base ` r ) , y e. ( Unit ` r ) |-> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) ) ) |
| 20 | 0 19 | wceq | |- /r = ( r e. _V |-> ( x e. ( Base ` r ) , y e. ( Unit ` r ) |-> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) ) ) |