| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdvr |
⊢ /r |
| 1 |
|
vr |
⊢ 𝑟 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑟 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
| 7 |
|
vy |
⊢ 𝑦 |
| 8 |
|
cui |
⊢ Unit |
| 9 |
5 8
|
cfv |
⊢ ( Unit ‘ 𝑟 ) |
| 10 |
3
|
cv |
⊢ 𝑥 |
| 11 |
|
cmulr |
⊢ .r |
| 12 |
5 11
|
cfv |
⊢ ( .r ‘ 𝑟 ) |
| 13 |
|
cinvr |
⊢ invr |
| 14 |
5 13
|
cfv |
⊢ ( invr ‘ 𝑟 ) |
| 15 |
7
|
cv |
⊢ 𝑦 |
| 16 |
15 14
|
cfv |
⊢ ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) |
| 17 |
10 16 12
|
co |
⊢ ( 𝑥 ( .r ‘ 𝑟 ) ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) ) |
| 18 |
3 7 6 9 17
|
cmpo |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Unit ‘ 𝑟 ) ↦ ( 𝑥 ( .r ‘ 𝑟 ) ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) ) ) |
| 19 |
1 2 18
|
cmpt |
⊢ ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Unit ‘ 𝑟 ) ↦ ( 𝑥 ( .r ‘ 𝑟 ) ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) ) ) ) |
| 20 |
0 19
|
wceq |
⊢ /r = ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Unit ‘ 𝑟 ) ↦ ( 𝑥 ( .r ‘ 𝑟 ) ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) ) ) ) |