Description: Define the elementwise operation associated with a given operation. For instance, + is the addition of complex numbers ( axaddf ), so if A and B are sets of complex numbers, then ( A ( elwise+ ) B ) is the set of numbers of the form ( x + y ) with x e. A and y e. B . The set of odd natural numbers is ( ( { 2 } ( elwisex. ) NN0 ) ( elwise+ ) { 1 } ) , or less formally 2 NN0 + 1 . (Contributed by BJ, 22-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | df-elwise | |- elwise = ( o e. _V |-> ( x e. _V , y e. _V |-> { z | E. u e. x E. v e. y z = ( u o v ) } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | celwise | |- elwise |
|
1 | vo | |- o |
|
2 | cvv | |- _V |
|
3 | vx | |- x |
|
4 | vy | |- y |
|
5 | vz | |- z |
|
6 | vu | |- u |
|
7 | 3 | cv | |- x |
8 | vv | |- v |
|
9 | 4 | cv | |- y |
10 | 5 | cv | |- z |
11 | 6 | cv | |- u |
12 | 1 | cv | |- o |
13 | 8 | cv | |- v |
14 | 11 13 12 | co | |- ( u o v ) |
15 | 10 14 | wceq | |- z = ( u o v ) |
16 | 15 8 9 | wrex | |- E. v e. y z = ( u o v ) |
17 | 16 6 7 | wrex | |- E. u e. x E. v e. y z = ( u o v ) |
18 | 17 5 | cab | |- { z | E. u e. x E. v e. y z = ( u o v ) } |
19 | 3 4 2 2 18 | cmpo | |- ( x e. _V , y e. _V |-> { z | E. u e. x E. v e. y z = ( u o v ) } ) |
20 | 1 2 19 | cmpt | |- ( o e. _V |-> ( x e. _V , y e. _V |-> { z | E. u e. x E. v e. y z = ( u o v ) } ) ) |
21 | 0 20 | wceq | |- elwise = ( o e. _V |-> ( x e. _V , y e. _V |-> { z | E. u e. x E. v e. y z = ( u o v ) } ) ) |