Metamath Proof Explorer


Definition df-elwise

Description: Define the elementwise operation associated with a given operation. For instance, + is the addition of complex numbers ( axaddf ), so if A and B are sets of complex numbers, then ( A ( elwise+ ) B ) is the set of numbers of the form ( x + y ) with x e. A and y e. B . The set of odd natural numbers is ( ( { 2 } ( elwisex. ) NN0 ) ( elwise+ ) { 1 } ) , or less formally 2 NN0 + 1 . (Contributed by BJ, 22-Dec-2021)

Ref Expression
Assertion df-elwise
|- elwise = ( o e. _V |-> ( x e. _V , y e. _V |-> { z | E. u e. x E. v e. y z = ( u o v ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 celwise
 |-  elwise
1 vo
 |-  o
2 cvv
 |-  _V
3 vx
 |-  x
4 vy
 |-  y
5 vz
 |-  z
6 vu
 |-  u
7 3 cv
 |-  x
8 vv
 |-  v
9 4 cv
 |-  y
10 5 cv
 |-  z
11 6 cv
 |-  u
12 1 cv
 |-  o
13 8 cv
 |-  v
14 11 13 12 co
 |-  ( u o v )
15 10 14 wceq
 |-  z = ( u o v )
16 15 8 9 wrex
 |-  E. v e. y z = ( u o v )
17 16 6 7 wrex
 |-  E. u e. x E. v e. y z = ( u o v )
18 17 5 cab
 |-  { z | E. u e. x E. v e. y z = ( u o v ) }
19 3 4 2 2 18 cmpo
 |-  ( x e. _V , y e. _V |-> { z | E. u e. x E. v e. y z = ( u o v ) } )
20 1 2 19 cmpt
 |-  ( o e. _V |-> ( x e. _V , y e. _V |-> { z | E. u e. x E. v e. y z = ( u o v ) } ) )
21 0 20 wceq
 |-  elwise = ( o e. _V |-> ( x e. _V , y e. _V |-> { z | E. u e. x E. v e. y z = ( u o v ) } ) )