Description: Define the elementwise operation associated with a given operation. For instance, + is the addition of complex numbers ( axaddf ), so if A and B are sets of complex numbers, then ( A ( elwise+ ) B ) is the set of numbers of the form ( x + y ) with x e. A and y e. B . The set of odd natural numbers is ( ( { 2 } ( elwisex. ) NN0 ) ( elwise+ ) { 1 } ) , or less formally 2 NN0 + 1 . (Contributed by BJ, 22-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-elwise | |- elwise = ( o e. _V |-> ( x e. _V , y e. _V |-> { z | E. u e. x E. v e. y z = ( u o v ) } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | celwise | |- elwise | |
| 1 | vo | |- o | |
| 2 | cvv | |- _V | |
| 3 | vx | |- x | |
| 4 | vy | |- y | |
| 5 | vz | |- z | |
| 6 | vu | |- u | |
| 7 | 3 | cv | |- x | 
| 8 | vv | |- v | |
| 9 | 4 | cv | |- y | 
| 10 | 5 | cv | |- z | 
| 11 | 6 | cv | |- u | 
| 12 | 1 | cv | |- o | 
| 13 | 8 | cv | |- v | 
| 14 | 11 13 12 | co | |- ( u o v ) | 
| 15 | 10 14 | wceq | |- z = ( u o v ) | 
| 16 | 15 8 9 | wrex | |- E. v e. y z = ( u o v ) | 
| 17 | 16 6 7 | wrex | |- E. u e. x E. v e. y z = ( u o v ) | 
| 18 | 17 5 | cab |  |-  { z | E. u e. x E. v e. y z = ( u o v ) } | 
| 19 | 3 4 2 2 18 | cmpo |  |-  ( x e. _V , y e. _V |-> { z | E. u e. x E. v e. y z = ( u o v ) } ) | 
| 20 | 1 2 19 | cmpt |  |-  ( o e. _V |-> ( x e. _V , y e. _V |-> { z | E. u e. x E. v e. y z = ( u o v ) } ) ) | 
| 21 | 0 20 | wceq |  |-  elwise = ( o e. _V |-> ( x e. _V , y e. _V |-> { z | E. u e. x E. v e. y z = ( u o v ) } ) ) |