Metamath Proof Explorer


Definition df-elwise

Description: Define the elementwise operation associated with a given operation. For instance, + is the addition of complex numbers ( axaddf ), so if A and B are sets of complex numbers, then ( A ( elwise+ ) B ) is the set of numbers of the form ( x + y ) with x e. A and y e. B . The set of odd natural numbers is ( ( { 2 } ( elwisex. ) NN0 ) ( elwise+ ) { 1 } ) , or less formally 2 NN0 + 1 . (Contributed by BJ, 22-Dec-2021)

Ref Expression
Assertion df-elwise elwise = ( 𝑜 ∈ V ↦ ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∣ ∃ 𝑢𝑥𝑣𝑦 𝑧 = ( 𝑢 𝑜 𝑣 ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 celwise elwise
1 vo 𝑜
2 cvv V
3 vx 𝑥
4 vy 𝑦
5 vz 𝑧
6 vu 𝑢
7 3 cv 𝑥
8 vv 𝑣
9 4 cv 𝑦
10 5 cv 𝑧
11 6 cv 𝑢
12 1 cv 𝑜
13 8 cv 𝑣
14 11 13 12 co ( 𝑢 𝑜 𝑣 )
15 10 14 wceq 𝑧 = ( 𝑢 𝑜 𝑣 )
16 15 8 9 wrex 𝑣𝑦 𝑧 = ( 𝑢 𝑜 𝑣 )
17 16 6 7 wrex 𝑢𝑥𝑣𝑦 𝑧 = ( 𝑢 𝑜 𝑣 )
18 17 5 cab { 𝑧 ∣ ∃ 𝑢𝑥𝑣𝑦 𝑧 = ( 𝑢 𝑜 𝑣 ) }
19 3 4 2 2 18 cmpo ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∣ ∃ 𝑢𝑥𝑣𝑦 𝑧 = ( 𝑢 𝑜 𝑣 ) } )
20 1 2 19 cmpt ( 𝑜 ∈ V ↦ ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∣ ∃ 𝑢𝑥𝑣𝑦 𝑧 = ( 𝑢 𝑜 𝑣 ) } ) )
21 0 20 wceq elwise = ( 𝑜 ∈ V ↦ ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∣ ∃ 𝑢𝑥𝑣𝑦 𝑧 = ( 𝑢 𝑜 𝑣 ) } ) )