Step |
Hyp |
Ref |
Expression |
1 |
|
moeq |
⊢ ∃* 𝑧 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ |
2 |
1
|
mosubop |
⊢ ∃* 𝑧 ∃ 𝑢 ∃ 𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) |
3 |
2
|
mosubop |
⊢ ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ) |
4 |
|
anass |
⊢ ( ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ↔ ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ) ) |
5 |
4
|
2exbii |
⊢ ( ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ↔ ∃ 𝑢 ∃ 𝑓 ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ) ) |
6 |
|
19.42vv |
⊢ ( ∃ 𝑢 ∃ 𝑓 ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ) ↔ ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ) ) |
7 |
5 6
|
bitri |
⊢ ( ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ↔ ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ) ) |
8 |
7
|
2exbii |
⊢ ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ↔ ∃ 𝑤 ∃ 𝑣 ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ) ) |
9 |
8
|
mobii |
⊢ ( ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ↔ ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ) ) |
10 |
3 9
|
mpbir |
⊢ ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) |
11 |
10
|
moani |
⊢ ∃* 𝑧 ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ) |
12 |
11
|
funoprab |
⊢ Fun { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ) } |
13 |
|
df-add |
⊢ + = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ) } |
14 |
13
|
funeqi |
⊢ ( Fun + ↔ Fun { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ) } ) |
15 |
12 14
|
mpbir |
⊢ Fun + |
16 |
13
|
dmeqi |
⊢ dom + = dom { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ) } |
17 |
|
dmoprabss |
⊢ dom { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ) } ⊆ ( ℂ × ℂ ) |
18 |
16 17
|
eqsstri |
⊢ dom + ⊆ ( ℂ × ℂ ) |
19 |
|
0ncn |
⊢ ¬ ∅ ∈ ℂ |
20 |
|
df-c |
⊢ ℂ = ( R × R ) |
21 |
|
oveq1 |
⊢ ( ⟨ 𝑧 , 𝑤 ⟩ = 𝑥 → ( ⟨ 𝑧 , 𝑤 ⟩ + ⟨ 𝑣 , 𝑢 ⟩ ) = ( 𝑥 + ⟨ 𝑣 , 𝑢 ⟩ ) ) |
22 |
21
|
eleq1d |
⊢ ( ⟨ 𝑧 , 𝑤 ⟩ = 𝑥 → ( ( ⟨ 𝑧 , 𝑤 ⟩ + ⟨ 𝑣 , 𝑢 ⟩ ) ∈ ( R × R ) ↔ ( 𝑥 + ⟨ 𝑣 , 𝑢 ⟩ ) ∈ ( R × R ) ) ) |
23 |
|
oveq2 |
⊢ ( ⟨ 𝑣 , 𝑢 ⟩ = 𝑦 → ( 𝑥 + ⟨ 𝑣 , 𝑢 ⟩ ) = ( 𝑥 + 𝑦 ) ) |
24 |
23
|
eleq1d |
⊢ ( ⟨ 𝑣 , 𝑢 ⟩ = 𝑦 → ( ( 𝑥 + ⟨ 𝑣 , 𝑢 ⟩ ) ∈ ( R × R ) ↔ ( 𝑥 + 𝑦 ) ∈ ( R × R ) ) ) |
25 |
|
addcnsr |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ⟨ 𝑧 , 𝑤 ⟩ + ⟨ 𝑣 , 𝑢 ⟩ ) = ⟨ ( 𝑧 +R 𝑣 ) , ( 𝑤 +R 𝑢 ) ⟩ ) |
26 |
|
addclsr |
⊢ ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑧 +R 𝑣 ) ∈ R ) |
27 |
|
addclsr |
⊢ ( ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑤 +R 𝑢 ) ∈ R ) |
28 |
26 27
|
anim12i |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) ∧ ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) ) |
29 |
28
|
an4s |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) ) |
30 |
|
opelxpi |
⊢ ( ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) → ⟨ ( 𝑧 +R 𝑣 ) , ( 𝑤 +R 𝑢 ) ⟩ ∈ ( R × R ) ) |
31 |
29 30
|
syl |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ⟨ ( 𝑧 +R 𝑣 ) , ( 𝑤 +R 𝑢 ) ⟩ ∈ ( R × R ) ) |
32 |
25 31
|
eqeltrd |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ⟨ 𝑧 , 𝑤 ⟩ + ⟨ 𝑣 , 𝑢 ⟩ ) ∈ ( R × R ) ) |
33 |
20 22 24 32
|
2optocl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ( R × R ) ) |
34 |
33 20
|
eleqtrrdi |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
35 |
19 34
|
oprssdm |
⊢ ( ℂ × ℂ ) ⊆ dom + |
36 |
18 35
|
eqssi |
⊢ dom + = ( ℂ × ℂ ) |
37 |
|
df-fn |
⊢ ( + Fn ( ℂ × ℂ ) ↔ ( Fun + ∧ dom + = ( ℂ × ℂ ) ) ) |
38 |
15 36 37
|
mpbir2an |
⊢ + Fn ( ℂ × ℂ ) |
39 |
34
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( 𝑥 + 𝑦 ) ∈ ℂ |
40 |
|
ffnov |
⊢ ( + : ( ℂ × ℂ ) ⟶ ℂ ↔ ( + Fn ( ℂ × ℂ ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( 𝑥 + 𝑦 ) ∈ ℂ ) ) |
41 |
38 39 40
|
mpbir2an |
⊢ + : ( ℂ × ℂ ) ⟶ ℂ |