Metamath Proof Explorer


Definition df-exp

Description: Define exponentiation to nonnegative integer powers. For example, ( 5 ^ 2 ) = 2 5 ( ex-exp ). Terminology: In general, "exponentiation" is the operation of raising a "base" x to the power of the "exponent" y , resulting in the "power" ( x ^ y ) , also called "x to the power of y". In this case, "integer exponentiation" is the operation of raising a complex "base" x to the power of an integer y , resulting in the "integer power" ( x ^ y ) .

This definition is not meant to be used directly; instead, exp0 and expp1 provide the standard recursive definition. The up-arrow notation is used by Donald Knuth for iterated exponentiation (_Science_ 194, 1235-1242, 1976) and is convenient for us since we don't have superscripts.

10-Jun-2005: The definition was extended to include zero exponents, so that 0 ^ 0 = 1 per the convention of Definition 10-4.1 of Gleason p. 134 ( 0exp0e1 ).

4-Jun-2014: The definition was extended to include negative integer exponents. For example, ( -u 3 ^ -u 2 ) = ( 1 / 9 ) ( ex-exp ). The case x = 0 , y < 0 gives the value ( 1 / 0 ) , so we will avoid this case in our theorems.

For a definition of exponentiation including complex exponents see df-cxp (complex exponentiation). Both definitions are equivalent for integer exponents, see cxpexpz . (Contributed by Raph Levien, 20-May-2004) (Revised by NM, 15-Oct-2004)

Ref Expression
Assertion df-exp
|- ^ = ( x e. CC , y e. ZZ |-> if ( y = 0 , 1 , if ( 0 < y , ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) , ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cexp
 |-  ^
1 vx
 |-  x
2 cc
 |-  CC
3 vy
 |-  y
4 cz
 |-  ZZ
5 3 cv
 |-  y
6 cc0
 |-  0
7 5 6 wceq
 |-  y = 0
8 c1
 |-  1
9 clt
 |-  <
10 6 5 9 wbr
 |-  0 < y
11 cmul
 |-  x.
12 cn
 |-  NN
13 1 cv
 |-  x
14 13 csn
 |-  { x }
15 12 14 cxp
 |-  ( NN X. { x } )
16 11 15 8 cseq
 |-  seq 1 ( x. , ( NN X. { x } ) )
17 5 16 cfv
 |-  ( seq 1 ( x. , ( NN X. { x } ) ) ` y )
18 cdiv
 |-  /
19 5 cneg
 |-  -u y
20 19 16 cfv
 |-  ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y )
21 8 20 18 co
 |-  ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) )
22 10 17 21 cif
 |-  if ( 0 < y , ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) , ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) )
23 7 8 22 cif
 |-  if ( y = 0 , 1 , if ( 0 < y , ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) , ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) ) )
24 1 3 2 4 23 cmpo
 |-  ( x e. CC , y e. ZZ |-> if ( y = 0 , 1 , if ( 0 < y , ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) , ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) ) ) )
25 0 24 wceq
 |-  ^ = ( x e. CC , y e. ZZ |-> if ( y = 0 , 1 , if ( 0 < y , ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) , ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) ) ) )