| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cfm |
|- FilMap |
| 1 |
|
vx |
|- x |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vf |
|- f |
| 4 |
|
vy |
|- y |
| 5 |
|
cfbas |
|- fBas |
| 6 |
3
|
cv |
|- f |
| 7 |
6
|
cdm |
|- dom f |
| 8 |
7 5
|
cfv |
|- ( fBas ` dom f ) |
| 9 |
1
|
cv |
|- x |
| 10 |
|
cfg |
|- filGen |
| 11 |
|
vt |
|- t |
| 12 |
4
|
cv |
|- y |
| 13 |
11
|
cv |
|- t |
| 14 |
6 13
|
cima |
|- ( f " t ) |
| 15 |
11 12 14
|
cmpt |
|- ( t e. y |-> ( f " t ) ) |
| 16 |
15
|
crn |
|- ran ( t e. y |-> ( f " t ) ) |
| 17 |
9 16 10
|
co |
|- ( x filGen ran ( t e. y |-> ( f " t ) ) ) |
| 18 |
4 8 17
|
cmpt |
|- ( y e. ( fBas ` dom f ) |-> ( x filGen ran ( t e. y |-> ( f " t ) ) ) ) |
| 19 |
1 3 2 2 18
|
cmpo |
|- ( x e. _V , f e. _V |-> ( y e. ( fBas ` dom f ) |-> ( x filGen ran ( t e. y |-> ( f " t ) ) ) ) ) |
| 20 |
0 19
|
wceq |
|- FilMap = ( x e. _V , f e. _V |-> ( y e. ( fBas ` dom f ) |-> ( x filGen ran ( t e. y |-> ( f " t ) ) ) ) ) |