Metamath Proof Explorer


Definition df-fm

Description: Define a function that takes a filter to a neighborhood filter of the range. (Since we now allow filter bases to have support smaller than the base set, the function has to come first to ensure that curryings are sets.) (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Stefan O'Rear, 20-Jul-2015)

Ref Expression
Assertion df-fm FilMap=xV,fVyfBasdomfxfilGenrantyft

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfm classFilMap
1 vx setvarx
2 cvv classV
3 vf setvarf
4 vy setvary
5 cfbas classfBas
6 3 cv setvarf
7 6 cdm classdomf
8 7 5 cfv classfBasdomf
9 1 cv setvarx
10 cfg classfilGen
11 vt setvart
12 4 cv setvary
13 11 cv setvart
14 6 13 cima classft
15 11 12 14 cmpt classtyft
16 15 crn classrantyft
17 9 16 10 co classxfilGenrantyft
18 4 8 17 cmpt classyfBasdomfxfilGenrantyft
19 1 3 2 2 18 cmpo classxV,fVyfBasdomfxfilGenrantyft
20 0 19 wceq wffFilMap=xV,fVyfBasdomfxfilGenrantyft