Metamath Proof Explorer


Definition df-fbas

Description: Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Stefan O'Rear, 11-Jul-2015)

Ref Expression
Assertion df-fbas fBas=wVx𝒫𝒫w|xxyxzxx𝒫yz

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfbas classfBas
1 vw setvarw
2 cvv classV
3 vx setvarx
4 1 cv setvarw
5 4 cpw class𝒫w
6 5 cpw class𝒫𝒫w
7 3 cv setvarx
8 c0 class
9 7 8 wne wffx
10 8 7 wnel wffx
11 vy setvary
12 vz setvarz
13 11 cv setvary
14 12 cv setvarz
15 13 14 cin classyz
16 15 cpw class𝒫yz
17 7 16 cin classx𝒫yz
18 17 8 wne wffx𝒫yz
19 18 12 7 wral wffzxx𝒫yz
20 19 11 7 wral wffyxzxx𝒫yz
21 9 10 20 w3a wffxxyxzxx𝒫yz
22 21 3 6 crab classx𝒫𝒫w|xxyxzxx𝒫yz
23 1 2 22 cmpt classwVx𝒫𝒫w|xxyxzxx𝒫yz
24 0 23 wceq wfffBas=wVx𝒫𝒫w|xxyxzxx𝒫yz