Description: Define an operation that produces a finite set of sequential integers. Read " M ... N " as "the set of integers from M to N inclusive". See fzval for its value and additional comments. (Contributed by NM, 6-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fz | |- ... = ( m e. ZZ , n e. ZZ |-> { k e. ZZ | ( m <_ k /\ k <_ n ) } ) | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cfz | |- ...  | 
						|
| 1 | vm | |- m  | 
						|
| 2 | cz | |- ZZ  | 
						|
| 3 | vn | |- n  | 
						|
| 4 | vk | |- k  | 
						|
| 5 | 1 | cv | |- m  | 
						
| 6 | cle | |- <_  | 
						|
| 7 | 4 | cv | |- k  | 
						
| 8 | 5 7 6 | wbr | |- m <_ k  | 
						
| 9 | 3 | cv | |- n  | 
						
| 10 | 7 9 6 | wbr | |- k <_ n  | 
						
| 11 | 8 10 | wa | |- ( m <_ k /\ k <_ n )  | 
						
| 12 | 11 4 2 | crab |  |-  { k e. ZZ | ( m <_ k /\ k <_ n ) } | 
						
| 13 | 1 3 2 2 12 | cmpo |  |-  ( m e. ZZ , n e. ZZ |-> { k e. ZZ | ( m <_ k /\ k <_ n ) } ) | 
						
| 14 | 0 13 | wceq |  |-  ... = ( m e. ZZ , n e. ZZ |-> { k e. ZZ | ( m <_ k /\ k <_ n ) } ) |