Step |
Hyp |
Ref |
Expression |
0 |
|
cgrim |
|- GraphIso |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
vh |
|- h |
4 |
|
vf |
|- f |
5 |
4
|
cv |
|- f |
6 |
|
cvtx |
|- Vtx |
7 |
1
|
cv |
|- g |
8 |
7 6
|
cfv |
|- ( Vtx ` g ) |
9 |
3
|
cv |
|- h |
10 |
9 6
|
cfv |
|- ( Vtx ` h ) |
11 |
8 10 5
|
wf1o |
|- f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) |
12 |
|
vj |
|- j |
13 |
|
ciedg |
|- iEdg |
14 |
7 13
|
cfv |
|- ( iEdg ` g ) |
15 |
|
ve |
|- e |
16 |
9 13
|
cfv |
|- ( iEdg ` h ) |
17 |
|
vd |
|- d |
18 |
12
|
cv |
|- j |
19 |
15
|
cv |
|- e |
20 |
19
|
cdm |
|- dom e |
21 |
17
|
cv |
|- d |
22 |
21
|
cdm |
|- dom d |
23 |
20 22 18
|
wf1o |
|- j : dom e -1-1-onto-> dom d |
24 |
|
vi |
|- i |
25 |
24
|
cv |
|- i |
26 |
25 18
|
cfv |
|- ( j ` i ) |
27 |
26 21
|
cfv |
|- ( d ` ( j ` i ) ) |
28 |
25 19
|
cfv |
|- ( e ` i ) |
29 |
5 28
|
cima |
|- ( f " ( e ` i ) ) |
30 |
27 29
|
wceq |
|- ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) |
31 |
30 24 20
|
wral |
|- A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) |
32 |
23 31
|
wa |
|- ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) |
33 |
32 17 16
|
wsbc |
|- [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) |
34 |
33 15 14
|
wsbc |
|- [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) |
35 |
34 12
|
wex |
|- E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) |
36 |
11 35
|
wa |
|- ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) ) |
37 |
36 4
|
cab |
|- { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) ) } |
38 |
1 3 2 2 37
|
cmpo |
|- ( g e. _V , h e. _V |-> { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) ) } ) |
39 |
0 38
|
wceq |
|- GraphIso = ( g e. _V , h e. _V |-> { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) ) } ) |