| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cgrim | ⊢  GraphIso | 
						
							| 1 |  | vg | ⊢ 𝑔 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vh | ⊢ ℎ | 
						
							| 4 |  | vf | ⊢ 𝑓 | 
						
							| 5 | 4 | cv | ⊢ 𝑓 | 
						
							| 6 |  | cvtx | ⊢ Vtx | 
						
							| 7 | 1 | cv | ⊢ 𝑔 | 
						
							| 8 | 7 6 | cfv | ⊢ ( Vtx ‘ 𝑔 ) | 
						
							| 9 | 3 | cv | ⊢ ℎ | 
						
							| 10 | 9 6 | cfv | ⊢ ( Vtx ‘ ℎ ) | 
						
							| 11 | 8 10 5 | wf1o | ⊢ 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) | 
						
							| 12 |  | vj | ⊢ 𝑗 | 
						
							| 13 |  | ciedg | ⊢ iEdg | 
						
							| 14 | 7 13 | cfv | ⊢ ( iEdg ‘ 𝑔 ) | 
						
							| 15 |  | ve | ⊢ 𝑒 | 
						
							| 16 | 9 13 | cfv | ⊢ ( iEdg ‘ ℎ ) | 
						
							| 17 |  | vd | ⊢ 𝑑 | 
						
							| 18 | 12 | cv | ⊢ 𝑗 | 
						
							| 19 | 15 | cv | ⊢ 𝑒 | 
						
							| 20 | 19 | cdm | ⊢ dom  𝑒 | 
						
							| 21 | 17 | cv | ⊢ 𝑑 | 
						
							| 22 | 21 | cdm | ⊢ dom  𝑑 | 
						
							| 23 | 20 22 18 | wf1o | ⊢ 𝑗 : dom  𝑒 –1-1-onto→ dom  𝑑 | 
						
							| 24 |  | vi | ⊢ 𝑖 | 
						
							| 25 | 24 | cv | ⊢ 𝑖 | 
						
							| 26 | 25 18 | cfv | ⊢ ( 𝑗 ‘ 𝑖 ) | 
						
							| 27 | 26 21 | cfv | ⊢ ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) | 
						
							| 28 | 25 19 | cfv | ⊢ ( 𝑒 ‘ 𝑖 ) | 
						
							| 29 | 5 28 | cima | ⊢ ( 𝑓  “  ( 𝑒 ‘ 𝑖 ) ) | 
						
							| 30 | 27 29 | wceq | ⊢ ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) )  =  ( 𝑓  “  ( 𝑒 ‘ 𝑖 ) ) | 
						
							| 31 | 30 24 20 | wral | ⊢ ∀ 𝑖  ∈  dom  𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) )  =  ( 𝑓  “  ( 𝑒 ‘ 𝑖 ) ) | 
						
							| 32 | 23 31 | wa | ⊢ ( 𝑗 : dom  𝑒 –1-1-onto→ dom  𝑑  ∧  ∀ 𝑖  ∈  dom  𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) )  =  ( 𝑓  “  ( 𝑒 ‘ 𝑖 ) ) ) | 
						
							| 33 | 32 17 16 | wsbc | ⊢ [ ( iEdg ‘ ℎ )  /  𝑑 ] ( 𝑗 : dom  𝑒 –1-1-onto→ dom  𝑑  ∧  ∀ 𝑖  ∈  dom  𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) )  =  ( 𝑓  “  ( 𝑒 ‘ 𝑖 ) ) ) | 
						
							| 34 | 33 15 14 | wsbc | ⊢ [ ( iEdg ‘ 𝑔 )  /  𝑒 ] [ ( iEdg ‘ ℎ )  /  𝑑 ] ( 𝑗 : dom  𝑒 –1-1-onto→ dom  𝑑  ∧  ∀ 𝑖  ∈  dom  𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) )  =  ( 𝑓  “  ( 𝑒 ‘ 𝑖 ) ) ) | 
						
							| 35 | 34 12 | wex | ⊢ ∃ 𝑗 [ ( iEdg ‘ 𝑔 )  /  𝑒 ] [ ( iEdg ‘ ℎ )  /  𝑑 ] ( 𝑗 : dom  𝑒 –1-1-onto→ dom  𝑑  ∧  ∀ 𝑖  ∈  dom  𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) )  =  ( 𝑓  “  ( 𝑒 ‘ 𝑖 ) ) ) | 
						
							| 36 | 11 35 | wa | ⊢ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ )  ∧  ∃ 𝑗 [ ( iEdg ‘ 𝑔 )  /  𝑒 ] [ ( iEdg ‘ ℎ )  /  𝑑 ] ( 𝑗 : dom  𝑒 –1-1-onto→ dom  𝑑  ∧  ∀ 𝑖  ∈  dom  𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) )  =  ( 𝑓  “  ( 𝑒 ‘ 𝑖 ) ) ) ) | 
						
							| 37 | 36 4 | cab | ⊢ { 𝑓  ∣  ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ )  ∧  ∃ 𝑗 [ ( iEdg ‘ 𝑔 )  /  𝑒 ] [ ( iEdg ‘ ℎ )  /  𝑑 ] ( 𝑗 : dom  𝑒 –1-1-onto→ dom  𝑑  ∧  ∀ 𝑖  ∈  dom  𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) )  =  ( 𝑓  “  ( 𝑒 ‘ 𝑖 ) ) ) ) } | 
						
							| 38 | 1 3 2 2 37 | cmpo | ⊢ ( 𝑔  ∈  V ,  ℎ  ∈  V  ↦  { 𝑓  ∣  ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ )  ∧  ∃ 𝑗 [ ( iEdg ‘ 𝑔 )  /  𝑒 ] [ ( iEdg ‘ ℎ )  /  𝑑 ] ( 𝑗 : dom  𝑒 –1-1-onto→ dom  𝑑  ∧  ∀ 𝑖  ∈  dom  𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) )  =  ( 𝑓  “  ( 𝑒 ‘ 𝑖 ) ) ) ) } ) | 
						
							| 39 | 0 38 | wceq | ⊢  GraphIso   =  ( 𝑔  ∈  V ,  ℎ  ∈  V  ↦  { 𝑓  ∣  ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ )  ∧  ∃ 𝑗 [ ( iEdg ‘ 𝑔 )  /  𝑒 ] [ ( iEdg ‘ ℎ )  /  𝑑 ] ( 𝑗 : dom  𝑒 –1-1-onto→ dom  𝑑  ∧  ∀ 𝑖  ∈  dom  𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) )  =  ( 𝑓  “  ( 𝑒 ‘ 𝑖 ) ) ) ) } ) |