Step |
Hyp |
Ref |
Expression |
0 |
|
cgrim |
⊢ GraphIso |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cvv |
⊢ V |
3 |
|
vh |
⊢ ℎ |
4 |
|
vf |
⊢ 𝑓 |
5 |
4
|
cv |
⊢ 𝑓 |
6 |
|
cvtx |
⊢ Vtx |
7 |
1
|
cv |
⊢ 𝑔 |
8 |
7 6
|
cfv |
⊢ ( Vtx ‘ 𝑔 ) |
9 |
3
|
cv |
⊢ ℎ |
10 |
9 6
|
cfv |
⊢ ( Vtx ‘ ℎ ) |
11 |
8 10 5
|
wf1o |
⊢ 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) |
12 |
|
vj |
⊢ 𝑗 |
13 |
|
ciedg |
⊢ iEdg |
14 |
7 13
|
cfv |
⊢ ( iEdg ‘ 𝑔 ) |
15 |
|
ve |
⊢ 𝑒 |
16 |
9 13
|
cfv |
⊢ ( iEdg ‘ ℎ ) |
17 |
|
vd |
⊢ 𝑑 |
18 |
12
|
cv |
⊢ 𝑗 |
19 |
15
|
cv |
⊢ 𝑒 |
20 |
19
|
cdm |
⊢ dom 𝑒 |
21 |
17
|
cv |
⊢ 𝑑 |
22 |
21
|
cdm |
⊢ dom 𝑑 |
23 |
20 22 18
|
wf1o |
⊢ 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 |
24 |
|
vi |
⊢ 𝑖 |
25 |
24
|
cv |
⊢ 𝑖 |
26 |
25 18
|
cfv |
⊢ ( 𝑗 ‘ 𝑖 ) |
27 |
26 21
|
cfv |
⊢ ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) |
28 |
25 19
|
cfv |
⊢ ( 𝑒 ‘ 𝑖 ) |
29 |
5 28
|
cima |
⊢ ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) |
30 |
27 29
|
wceq |
⊢ ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) |
31 |
30 24 20
|
wral |
⊢ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) |
32 |
23 31
|
wa |
⊢ ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) |
33 |
32 17 16
|
wsbc |
⊢ [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) |
34 |
33 15 14
|
wsbc |
⊢ [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) |
35 |
34 12
|
wex |
⊢ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) |
36 |
11 35
|
wa |
⊢ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) |
37 |
36 4
|
cab |
⊢ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) } |
38 |
1 3 2 2 37
|
cmpo |
⊢ ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) } ) |
39 |
0 38
|
wceq |
⊢ GraphIso = ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) } ) |