Metamath Proof Explorer


Definition df-grim

Description: An isomorphism between two graphs is a bijection between the sets of vertices of the two graphs that preserves adjacency, see definition in Diestel p. 3. (Contributed by AV, 19-Apr-2025)

Ref Expression
Assertion df-grim GraphIso = ( 𝑔 ∈ V , ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgrim GraphIso
1 vg 𝑔
2 cvv V
3 vh
4 vf 𝑓
5 4 cv 𝑓
6 cvtx Vtx
7 1 cv 𝑔
8 7 6 cfv ( Vtx ‘ 𝑔 )
9 3 cv
10 9 6 cfv ( Vtx ‘ )
11 8 10 5 wf1o 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ )
12 vj 𝑗
13 ciedg iEdg
14 7 13 cfv ( iEdg ‘ 𝑔 )
15 ve 𝑒
16 9 13 cfv ( iEdg ‘ )
17 vd 𝑑
18 12 cv 𝑗
19 15 cv 𝑒
20 19 cdm dom 𝑒
21 17 cv 𝑑
22 21 cdm dom 𝑑
23 20 22 18 wf1o 𝑗 : dom 𝑒1-1-onto→ dom 𝑑
24 vi 𝑖
25 24 cv 𝑖
26 25 18 cfv ( 𝑗𝑖 )
27 26 21 cfv ( 𝑑 ‘ ( 𝑗𝑖 ) )
28 25 19 cfv ( 𝑒𝑖 )
29 5 28 cima ( 𝑓 “ ( 𝑒𝑖 ) )
30 27 29 wceq ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) )
31 30 24 20 wral 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) )
32 23 31 wa ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) )
33 32 17 16 wsbc [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) )
34 33 15 14 wsbc [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) )
35 34 12 wex 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) )
36 11 35 wa ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) )
37 36 4 cab { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) ) }
38 1 3 2 2 37 cmpo ( 𝑔 ∈ V , ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) ) } )
39 0 38 wceq GraphIso = ( 𝑔 ∈ V , ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) ) } )