Step |
Hyp |
Ref |
Expression |
1 |
|
df-grim |
⊢ GraphIso = ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) } ) |
2 |
|
f1of |
⊢ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) → 𝑓 : ( Vtx ‘ 𝑔 ) ⟶ ( Vtx ‘ ℎ ) ) |
3 |
|
fvex |
⊢ ( Vtx ‘ ℎ ) ∈ V |
4 |
|
fvex |
⊢ ( Vtx ‘ 𝑔 ) ∈ V |
5 |
3 4
|
elmap |
⊢ ( 𝑓 ∈ ( ( Vtx ‘ ℎ ) ↑m ( Vtx ‘ 𝑔 ) ) ↔ 𝑓 : ( Vtx ‘ 𝑔 ) ⟶ ( Vtx ‘ ℎ ) ) |
6 |
2 5
|
sylibr |
⊢ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) → 𝑓 ∈ ( ( Vtx ‘ ℎ ) ↑m ( Vtx ‘ 𝑔 ) ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) → 𝑓 ∈ ( ( Vtx ‘ ℎ ) ↑m ( Vtx ‘ 𝑔 ) ) ) |
8 |
|
ovex |
⊢ ( ( Vtx ‘ ℎ ) ↑m ( Vtx ‘ 𝑔 ) ) ∈ V |
9 |
7 8
|
abex |
⊢ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) } ∈ V |
10 |
1 9
|
fnmpoi |
⊢ GraphIso Fn ( V × V ) |