Metamath Proof Explorer


Theorem grimfn

Description: The graph isomorphism function is a well-defined function. (Contributed by AV, 28-Apr-2025)

Ref Expression
Assertion grimfn GraphIso Fn ( V × V )

Proof

Step Hyp Ref Expression
1 df-grim GraphIso = ( 𝑔 ∈ V , ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) ) } )
2 f1of ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) → 𝑓 : ( Vtx ‘ 𝑔 ) ⟶ ( Vtx ‘ ) )
3 fvex ( Vtx ‘ ) ∈ V
4 fvex ( Vtx ‘ 𝑔 ) ∈ V
5 3 4 elmap ( 𝑓 ∈ ( ( Vtx ‘ ) ↑m ( Vtx ‘ 𝑔 ) ) ↔ 𝑓 : ( Vtx ‘ 𝑔 ) ⟶ ( Vtx ‘ ) )
6 2 5 sylibr ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) → 𝑓 ∈ ( ( Vtx ‘ ) ↑m ( Vtx ‘ 𝑔 ) ) )
7 6 adantr ( ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) ) → 𝑓 ∈ ( ( Vtx ‘ ) ↑m ( Vtx ‘ 𝑔 ) ) )
8 ovex ( ( Vtx ‘ ) ↑m ( Vtx ‘ 𝑔 ) ) ∈ V
9 7 8 abex { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) ) } ∈ V
10 1 9 fnmpoi GraphIso Fn ( V × V )