Metamath Proof Explorer


Theorem grimfn

Description: The graph isomorphism function is a well-defined function. (Contributed by AV, 28-Apr-2025)

Ref Expression
Assertion grimfn GraphIso Fn V × V

Proof

Step Hyp Ref Expression
1 df-grim GraphIso = g V , h V f | f : Vtx g 1-1 onto Vtx h j [˙ iEdg g / e]˙ [˙ iEdg h / d]˙ j : dom e 1-1 onto dom d i dom e d j i = f e i
2 f1of f : Vtx g 1-1 onto Vtx h f : Vtx g Vtx h
3 fvex Vtx h V
4 fvex Vtx g V
5 3 4 elmap f Vtx h Vtx g f : Vtx g Vtx h
6 2 5 sylibr f : Vtx g 1-1 onto Vtx h f Vtx h Vtx g
7 6 adantr f : Vtx g 1-1 onto Vtx h j [˙ iEdg g / e]˙ [˙ iEdg h / d]˙ j : dom e 1-1 onto dom d i dom e d j i = f e i f Vtx h Vtx g
8 ovex Vtx h Vtx g V
9 7 8 abex f | f : Vtx g 1-1 onto Vtx h j [˙ iEdg g / e]˙ [˙ iEdg h / d]˙ j : dom e 1-1 onto dom d i dom e d j i = f e i V
10 1 9 fnmpoi GraphIso Fn V × V