Metamath Proof Explorer


Theorem grimdmrel

Description: The domain of the graph isomorphism function is a relation. (Contributed by AV, 28-Apr-2025)

Ref Expression
Assertion grimdmrel Rel dom GraphIso

Proof

Step Hyp Ref Expression
1 df-grim GraphIso = g V , h V f | f : Vtx g 1-1 onto Vtx h j [˙ iEdg g / e]˙ [˙ iEdg h / d]˙ j : dom e 1-1 onto dom d i dom e d j i = f e i
2 1 reldmmpo Rel dom GraphIso