Metamath Proof Explorer


Theorem grimdmrel

Description: The domain of the graph isomorphism function is a relation. (Contributed by AV, 28-Apr-2025)

Ref Expression
Assertion grimdmrel Rel dom GraphIso

Proof

Step Hyp Ref Expression
1 df-grim GraphIso = ( 𝑔 ∈ V , ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) ) } )
2 1 reldmmpo Rel dom GraphIso