Step |
Hyp |
Ref |
Expression |
0 |
|
cgzf |
|- ZF |
1 |
|
vm |
|- m |
2 |
1
|
cv |
|- m |
3 |
2
|
wtr |
|- Tr m |
4 |
|
cprv |
|- |= |
5 |
|
cgze |
|- AxExt |
6 |
2 5 4
|
wbr |
|- m |= AxExt |
7 |
|
cgzp |
|- AxPow |
8 |
2 7 4
|
wbr |
|- m |= AxPow |
9 |
3 6 8
|
w3a |
|- ( Tr m /\ m |= AxExt /\ m |= AxPow ) |
10 |
|
cgzu |
|- AxUn |
11 |
2 10 4
|
wbr |
|- m |= AxUn |
12 |
|
cgzg |
|- AxReg |
13 |
2 12 4
|
wbr |
|- m |= AxReg |
14 |
|
cgzi |
|- AxInf |
15 |
2 14 4
|
wbr |
|- m |= AxInf |
16 |
11 13 15
|
w3a |
|- ( m |= AxUn /\ m |= AxReg /\ m |= AxInf ) |
17 |
|
vu |
|- u |
18 |
|
cfmla |
|- Fmla |
19 |
|
com |
|- _om |
20 |
19 18
|
cfv |
|- ( Fmla ` _om ) |
21 |
|
cgzr |
|- AxRep |
22 |
17
|
cv |
|- u |
23 |
22 21
|
cfv |
|- ( AxRep ` u ) |
24 |
2 23 4
|
wbr |
|- m |= ( AxRep ` u ) |
25 |
24 17 20
|
wral |
|- A. u e. ( Fmla ` _om ) m |= ( AxRep ` u ) |
26 |
9 16 25
|
w3a |
|- ( ( Tr m /\ m |= AxExt /\ m |= AxPow ) /\ ( m |= AxUn /\ m |= AxReg /\ m |= AxInf ) /\ A. u e. ( Fmla ` _om ) m |= ( AxRep ` u ) ) |
27 |
26 1
|
cab |
|- { m | ( ( Tr m /\ m |= AxExt /\ m |= AxPow ) /\ ( m |= AxUn /\ m |= AxReg /\ m |= AxInf ) /\ A. u e. ( Fmla ` _om ) m |= ( AxRep ` u ) ) } |
28 |
0 27
|
wceq |
|- ZF = { m | ( ( Tr m /\ m |= AxExt /\ m |= AxPow ) /\ ( m |= AxUn /\ m |= AxReg /\ m |= AxInf ) /\ A. u e. ( Fmla ` _om ) m |= ( AxRep ` u ) ) } |