| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cgzf |
|- ZF |
| 1 |
|
vm |
|- m |
| 2 |
1
|
cv |
|- m |
| 3 |
2
|
wtr |
|- Tr m |
| 4 |
|
cprv |
|- |= |
| 5 |
|
cgze |
|- AxExt |
| 6 |
2 5 4
|
wbr |
|- m |= AxExt |
| 7 |
|
cgzp |
|- AxPow |
| 8 |
2 7 4
|
wbr |
|- m |= AxPow |
| 9 |
3 6 8
|
w3a |
|- ( Tr m /\ m |= AxExt /\ m |= AxPow ) |
| 10 |
|
cgzu |
|- AxUn |
| 11 |
2 10 4
|
wbr |
|- m |= AxUn |
| 12 |
|
cgzg |
|- AxReg |
| 13 |
2 12 4
|
wbr |
|- m |= AxReg |
| 14 |
|
cgzi |
|- AxInf |
| 15 |
2 14 4
|
wbr |
|- m |= AxInf |
| 16 |
11 13 15
|
w3a |
|- ( m |= AxUn /\ m |= AxReg /\ m |= AxInf ) |
| 17 |
|
vu |
|- u |
| 18 |
|
cfmla |
|- Fmla |
| 19 |
|
com |
|- _om |
| 20 |
19 18
|
cfv |
|- ( Fmla ` _om ) |
| 21 |
|
cgzr |
|- AxRep |
| 22 |
17
|
cv |
|- u |
| 23 |
22 21
|
cfv |
|- ( AxRep ` u ) |
| 24 |
2 23 4
|
wbr |
|- m |= ( AxRep ` u ) |
| 25 |
24 17 20
|
wral |
|- A. u e. ( Fmla ` _om ) m |= ( AxRep ` u ) |
| 26 |
9 16 25
|
w3a |
|- ( ( Tr m /\ m |= AxExt /\ m |= AxPow ) /\ ( m |= AxUn /\ m |= AxReg /\ m |= AxInf ) /\ A. u e. ( Fmla ` _om ) m |= ( AxRep ` u ) ) |
| 27 |
26 1
|
cab |
|- { m | ( ( Tr m /\ m |= AxExt /\ m |= AxPow ) /\ ( m |= AxUn /\ m |= AxReg /\ m |= AxInf ) /\ A. u e. ( Fmla ` _om ) m |= ( AxRep ` u ) ) } |
| 28 |
0 27
|
wceq |
|- ZF = { m | ( ( Tr m /\ m |= AxExt /\ m |= AxPow ) /\ ( m |= AxUn /\ m |= AxReg /\ m |= AxInf ) /\ A. u e. ( Fmla ` _om ) m |= ( AxRep ` u ) ) } |