Metamath Proof Explorer


Definition df-gzf

Description: Define the class of all (transitive) models of ZF. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gzf ZF = { 𝑚 ∣ ( ( Tr 𝑚𝑚 ⊧ AxExt ∧ 𝑚 ⊧ AxPow ) ∧ ( 𝑚 ⊧ AxUn ∧ 𝑚 ⊧ AxReg ∧ 𝑚 ⊧ AxInf ) ∧ ∀ 𝑢 ∈ ( Fmla ‘ ω ) 𝑚 ⊧ ( AxRep ‘ 𝑢 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgzf ZF
1 vm 𝑚
2 1 cv 𝑚
3 2 wtr Tr 𝑚
4 cprv
5 cgze AxExt
6 2 5 4 wbr 𝑚 ⊧ AxExt
7 cgzp AxPow
8 2 7 4 wbr 𝑚 ⊧ AxPow
9 3 6 8 w3a ( Tr 𝑚𝑚 ⊧ AxExt ∧ 𝑚 ⊧ AxPow )
10 cgzu AxUn
11 2 10 4 wbr 𝑚 ⊧ AxUn
12 cgzg AxReg
13 2 12 4 wbr 𝑚 ⊧ AxReg
14 cgzi AxInf
15 2 14 4 wbr 𝑚 ⊧ AxInf
16 11 13 15 w3a ( 𝑚 ⊧ AxUn ∧ 𝑚 ⊧ AxReg ∧ 𝑚 ⊧ AxInf )
17 vu 𝑢
18 cfmla Fmla
19 com ω
20 19 18 cfv ( Fmla ‘ ω )
21 cgzr AxRep
22 17 cv 𝑢
23 22 21 cfv ( AxRep ‘ 𝑢 )
24 2 23 4 wbr 𝑚 ⊧ ( AxRep ‘ 𝑢 )
25 24 17 20 wral 𝑢 ∈ ( Fmla ‘ ω ) 𝑚 ⊧ ( AxRep ‘ 𝑢 )
26 9 16 25 w3a ( ( Tr 𝑚𝑚 ⊧ AxExt ∧ 𝑚 ⊧ AxPow ) ∧ ( 𝑚 ⊧ AxUn ∧ 𝑚 ⊧ AxReg ∧ 𝑚 ⊧ AxInf ) ∧ ∀ 𝑢 ∈ ( Fmla ‘ ω ) 𝑚 ⊧ ( AxRep ‘ 𝑢 ) )
27 26 1 cab { 𝑚 ∣ ( ( Tr 𝑚𝑚 ⊧ AxExt ∧ 𝑚 ⊧ AxPow ) ∧ ( 𝑚 ⊧ AxUn ∧ 𝑚 ⊧ AxReg ∧ 𝑚 ⊧ AxInf ) ∧ ∀ 𝑢 ∈ ( Fmla ‘ ω ) 𝑚 ⊧ ( AxRep ‘ 𝑢 ) ) }
28 0 27 wceq ZF = { 𝑚 ∣ ( ( Tr 𝑚𝑚 ⊧ AxExt ∧ 𝑚 ⊧ AxPow ) ∧ ( 𝑚 ⊧ AxUn ∧ 𝑚 ⊧ AxReg ∧ 𝑚 ⊧ AxInf ) ∧ ∀ 𝑢 ∈ ( Fmla ‘ ω ) 𝑚 ⊧ ( AxRep ‘ 𝑢 ) ) }