| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cgzf |
⊢ ZF |
| 1 |
|
vm |
⊢ 𝑚 |
| 2 |
1
|
cv |
⊢ 𝑚 |
| 3 |
2
|
wtr |
⊢ Tr 𝑚 |
| 4 |
|
cprv |
⊢ ⊧ |
| 5 |
|
cgze |
⊢ AxExt |
| 6 |
2 5 4
|
wbr |
⊢ 𝑚 ⊧ AxExt |
| 7 |
|
cgzp |
⊢ AxPow |
| 8 |
2 7 4
|
wbr |
⊢ 𝑚 ⊧ AxPow |
| 9 |
3 6 8
|
w3a |
⊢ ( Tr 𝑚 ∧ 𝑚 ⊧ AxExt ∧ 𝑚 ⊧ AxPow ) |
| 10 |
|
cgzu |
⊢ AxUn |
| 11 |
2 10 4
|
wbr |
⊢ 𝑚 ⊧ AxUn |
| 12 |
|
cgzg |
⊢ AxReg |
| 13 |
2 12 4
|
wbr |
⊢ 𝑚 ⊧ AxReg |
| 14 |
|
cgzi |
⊢ AxInf |
| 15 |
2 14 4
|
wbr |
⊢ 𝑚 ⊧ AxInf |
| 16 |
11 13 15
|
w3a |
⊢ ( 𝑚 ⊧ AxUn ∧ 𝑚 ⊧ AxReg ∧ 𝑚 ⊧ AxInf ) |
| 17 |
|
vu |
⊢ 𝑢 |
| 18 |
|
cfmla |
⊢ Fmla |
| 19 |
|
com |
⊢ ω |
| 20 |
19 18
|
cfv |
⊢ ( Fmla ‘ ω ) |
| 21 |
|
cgzr |
⊢ AxRep |
| 22 |
17
|
cv |
⊢ 𝑢 |
| 23 |
22 21
|
cfv |
⊢ ( AxRep ‘ 𝑢 ) |
| 24 |
2 23 4
|
wbr |
⊢ 𝑚 ⊧ ( AxRep ‘ 𝑢 ) |
| 25 |
24 17 20
|
wral |
⊢ ∀ 𝑢 ∈ ( Fmla ‘ ω ) 𝑚 ⊧ ( AxRep ‘ 𝑢 ) |
| 26 |
9 16 25
|
w3a |
⊢ ( ( Tr 𝑚 ∧ 𝑚 ⊧ AxExt ∧ 𝑚 ⊧ AxPow ) ∧ ( 𝑚 ⊧ AxUn ∧ 𝑚 ⊧ AxReg ∧ 𝑚 ⊧ AxInf ) ∧ ∀ 𝑢 ∈ ( Fmla ‘ ω ) 𝑚 ⊧ ( AxRep ‘ 𝑢 ) ) |
| 27 |
26 1
|
cab |
⊢ { 𝑚 ∣ ( ( Tr 𝑚 ∧ 𝑚 ⊧ AxExt ∧ 𝑚 ⊧ AxPow ) ∧ ( 𝑚 ⊧ AxUn ∧ 𝑚 ⊧ AxReg ∧ 𝑚 ⊧ AxInf ) ∧ ∀ 𝑢 ∈ ( Fmla ‘ ω ) 𝑚 ⊧ ( AxRep ‘ 𝑢 ) ) } |
| 28 |
0 27
|
wceq |
⊢ ZF = { 𝑚 ∣ ( ( Tr 𝑚 ∧ 𝑚 ⊧ AxExt ∧ 𝑚 ⊧ AxPow ) ∧ ( 𝑚 ⊧ AxUn ∧ 𝑚 ⊧ AxReg ∧ 𝑚 ⊧ AxInf ) ∧ ∀ 𝑢 ∈ ( Fmla ‘ ω ) 𝑚 ⊧ ( AxRep ‘ 𝑢 ) ) } |