Step |
Hyp |
Ref |
Expression |
0 |
|
cgzf |
⊢ ZF |
1 |
|
vm |
⊢ 𝑚 |
2 |
1
|
cv |
⊢ 𝑚 |
3 |
2
|
wtr |
⊢ Tr 𝑚 |
4 |
|
cprv |
⊢ ⊧ |
5 |
|
cgze |
⊢ AxExt |
6 |
2 5 4
|
wbr |
⊢ 𝑚 ⊧ AxExt |
7 |
|
cgzp |
⊢ AxPow |
8 |
2 7 4
|
wbr |
⊢ 𝑚 ⊧ AxPow |
9 |
3 6 8
|
w3a |
⊢ ( Tr 𝑚 ∧ 𝑚 ⊧ AxExt ∧ 𝑚 ⊧ AxPow ) |
10 |
|
cgzu |
⊢ AxUn |
11 |
2 10 4
|
wbr |
⊢ 𝑚 ⊧ AxUn |
12 |
|
cgzg |
⊢ AxReg |
13 |
2 12 4
|
wbr |
⊢ 𝑚 ⊧ AxReg |
14 |
|
cgzi |
⊢ AxInf |
15 |
2 14 4
|
wbr |
⊢ 𝑚 ⊧ AxInf |
16 |
11 13 15
|
w3a |
⊢ ( 𝑚 ⊧ AxUn ∧ 𝑚 ⊧ AxReg ∧ 𝑚 ⊧ AxInf ) |
17 |
|
vu |
⊢ 𝑢 |
18 |
|
cfmla |
⊢ Fmla |
19 |
|
com |
⊢ ω |
20 |
19 18
|
cfv |
⊢ ( Fmla ‘ ω ) |
21 |
|
cgzr |
⊢ AxRep |
22 |
17
|
cv |
⊢ 𝑢 |
23 |
22 21
|
cfv |
⊢ ( AxRep ‘ 𝑢 ) |
24 |
2 23 4
|
wbr |
⊢ 𝑚 ⊧ ( AxRep ‘ 𝑢 ) |
25 |
24 17 20
|
wral |
⊢ ∀ 𝑢 ∈ ( Fmla ‘ ω ) 𝑚 ⊧ ( AxRep ‘ 𝑢 ) |
26 |
9 16 25
|
w3a |
⊢ ( ( Tr 𝑚 ∧ 𝑚 ⊧ AxExt ∧ 𝑚 ⊧ AxPow ) ∧ ( 𝑚 ⊧ AxUn ∧ 𝑚 ⊧ AxReg ∧ 𝑚 ⊧ AxInf ) ∧ ∀ 𝑢 ∈ ( Fmla ‘ ω ) 𝑚 ⊧ ( AxRep ‘ 𝑢 ) ) |
27 |
26 1
|
cab |
⊢ { 𝑚 ∣ ( ( Tr 𝑚 ∧ 𝑚 ⊧ AxExt ∧ 𝑚 ⊧ AxPow ) ∧ ( 𝑚 ⊧ AxUn ∧ 𝑚 ⊧ AxReg ∧ 𝑚 ⊧ AxInf ) ∧ ∀ 𝑢 ∈ ( Fmla ‘ ω ) 𝑚 ⊧ ( AxRep ‘ 𝑢 ) ) } |
28 |
0 27
|
wceq |
⊢ ZF = { 𝑚 ∣ ( ( Tr 𝑚 ∧ 𝑚 ⊧ AxExt ∧ 𝑚 ⊧ AxPow ) ∧ ( 𝑚 ⊧ AxUn ∧ 𝑚 ⊧ AxReg ∧ 𝑚 ⊧ AxInf ) ∧ ∀ 𝑢 ∈ ( Fmla ‘ ω ) 𝑚 ⊧ ( AxRep ‘ 𝑢 ) ) } |