| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cgzu |  |-  AxUn | 
						
							| 1 |  | c1o |  |-  1o | 
						
							| 2 |  | c2o |  |-  2o | 
						
							| 3 |  | cgoe |  |-  e.g | 
						
							| 4 | 2 1 3 | co |  |-  ( 2o e.g 1o ) | 
						
							| 5 |  | cgoa |  |-  /\g | 
						
							| 6 |  | c0 |  |-  (/) | 
						
							| 7 | 1 6 3 | co |  |-  ( 1o e.g (/) ) | 
						
							| 8 | 4 7 5 | co |  |-  ( ( 2o e.g 1o ) /\g ( 1o e.g (/) ) ) | 
						
							| 9 | 8 1 | cgox |  |-  E.g 1o ( ( 2o e.g 1o ) /\g ( 1o e.g (/) ) ) | 
						
							| 10 |  | cgoi |  |-  ->g | 
						
							| 11 | 9 4 10 | co |  |-  ( E.g 1o ( ( 2o e.g 1o ) /\g ( 1o e.g (/) ) ) ->g ( 2o e.g 1o ) ) | 
						
							| 12 | 11 2 | cgol |  |-  A.g 2o ( E.g 1o ( ( 2o e.g 1o ) /\g ( 1o e.g (/) ) ) ->g ( 2o e.g 1o ) ) | 
						
							| 13 | 12 1 | cgox |  |-  E.g 1o A.g 2o ( E.g 1o ( ( 2o e.g 1o ) /\g ( 1o e.g (/) ) ) ->g ( 2o e.g 1o ) ) | 
						
							| 14 | 0 13 | wceq |  |-  AxUn = E.g 1o A.g 2o ( E.g 1o ( ( 2o e.g 1o ) /\g ( 1o e.g (/) ) ) ->g ( 2o e.g 1o ) ) |