Step |
Hyp |
Ref |
Expression |
0 |
|
cgzg |
|- AxReg |
1 |
|
c1o |
|- 1o |
2 |
|
cgoe |
|- e.g |
3 |
|
c0 |
|- (/) |
4 |
1 3 2
|
co |
|- ( 1o e.g (/) ) |
5 |
4 1
|
cgox |
|- E.g 1o ( 1o e.g (/) ) |
6 |
|
cgoi |
|- ->g |
7 |
|
cgoa |
|- /\g |
8 |
|
c2o |
|- 2o |
9 |
8 1 2
|
co |
|- ( 2o e.g 1o ) |
10 |
8 3 2
|
co |
|- ( 2o e.g (/) ) |
11 |
10
|
cgon |
|- -.g ( 2o e.g (/) ) |
12 |
9 11 6
|
co |
|- ( ( 2o e.g 1o ) ->g -.g ( 2o e.g (/) ) ) |
13 |
12 8
|
cgol |
|- A.g 2o ( ( 2o e.g 1o ) ->g -.g ( 2o e.g (/) ) ) |
14 |
4 13 7
|
co |
|- ( ( 1o e.g (/) ) /\g A.g 2o ( ( 2o e.g 1o ) ->g -.g ( 2o e.g (/) ) ) ) |
15 |
14 1
|
cgox |
|- E.g 1o ( ( 1o e.g (/) ) /\g A.g 2o ( ( 2o e.g 1o ) ->g -.g ( 2o e.g (/) ) ) ) |
16 |
5 15 6
|
co |
|- ( E.g 1o ( 1o e.g (/) ) ->g E.g 1o ( ( 1o e.g (/) ) /\g A.g 2o ( ( 2o e.g 1o ) ->g -.g ( 2o e.g (/) ) ) ) ) |
17 |
0 16
|
wceq |
|- AxReg = ( E.g 1o ( 1o e.g (/) ) ->g E.g 1o ( ( 1o e.g (/) ) /\g A.g 2o ( ( 2o e.g 1o ) ->g -.g ( 2o e.g (/) ) ) ) ) |