Metamath Proof Explorer


Definition df-gzreg

Description: The Godel-set version of the Axiom of Regularity. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gzreg AxReg=𝑔1𝑜1𝑜𝑔𝑔𝑔1𝑜1𝑜𝑔𝑔𝑔2𝑜2𝑜𝑔1𝑜𝑔¬𝑔2𝑜𝑔

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgzg classAxReg
1 c1o class1𝑜
2 cgoe class𝑔
3 c0 class
4 1 3 2 co class1𝑜𝑔
5 4 1 cgox class𝑔1𝑜1𝑜𝑔
6 cgoi class𝑔
7 cgoa class𝑔
8 c2o class2𝑜
9 8 1 2 co class2𝑜𝑔1𝑜
10 8 3 2 co class2𝑜𝑔
11 10 cgon class¬𝑔2𝑜𝑔
12 9 11 6 co class2𝑜𝑔1𝑜𝑔¬𝑔2𝑜𝑔
13 12 8 cgol class𝑔2𝑜2𝑜𝑔1𝑜𝑔¬𝑔2𝑜𝑔
14 4 13 7 co class1𝑜𝑔𝑔𝑔2𝑜2𝑜𝑔1𝑜𝑔¬𝑔2𝑜𝑔
15 14 1 cgox class𝑔1𝑜1𝑜𝑔𝑔𝑔2𝑜2𝑜𝑔1𝑜𝑔¬𝑔2𝑜𝑔
16 5 15 6 co class𝑔1𝑜1𝑜𝑔𝑔𝑔1𝑜1𝑜𝑔𝑔𝑔2𝑜2𝑜𝑔1𝑜𝑔¬𝑔2𝑜𝑔
17 0 16 wceq wffAxReg=𝑔1𝑜1𝑜𝑔𝑔𝑔1𝑜1𝑜𝑔𝑔𝑔2𝑜2𝑜𝑔1𝑜𝑔¬𝑔2𝑜𝑔