Metamath Proof Explorer


Definition df-gzreg

Description: The Godel-set version of the Axiom of Regularity. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gzreg AxReg = ( ∃𝑔 1o ( 1o𝑔 ∅ ) →𝑔𝑔 1o ( ( 1o𝑔 ∅ ) ∧𝑔𝑔 2o ( ( 2o𝑔 1o ) →𝑔 ¬𝑔 ( 2o𝑔 ∅ ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgzg AxReg
1 c1o 1o
2 cgoe 𝑔
3 c0
4 1 3 2 co ( 1o𝑔 ∅ )
5 4 1 cgox 𝑔 1o ( 1o𝑔 ∅ )
6 cgoi 𝑔
7 cgoa 𝑔
8 c2o 2o
9 8 1 2 co ( 2o𝑔 1o )
10 8 3 2 co ( 2o𝑔 ∅ )
11 10 cgon ¬𝑔 ( 2o𝑔 ∅ )
12 9 11 6 co ( ( 2o𝑔 1o ) →𝑔 ¬𝑔 ( 2o𝑔 ∅ ) )
13 12 8 cgol 𝑔 2o ( ( 2o𝑔 1o ) →𝑔 ¬𝑔 ( 2o𝑔 ∅ ) )
14 4 13 7 co ( ( 1o𝑔 ∅ ) ∧𝑔𝑔 2o ( ( 2o𝑔 1o ) →𝑔 ¬𝑔 ( 2o𝑔 ∅ ) ) )
15 14 1 cgox 𝑔 1o ( ( 1o𝑔 ∅ ) ∧𝑔𝑔 2o ( ( 2o𝑔 1o ) →𝑔 ¬𝑔 ( 2o𝑔 ∅ ) ) )
16 5 15 6 co ( ∃𝑔 1o ( 1o𝑔 ∅ ) →𝑔𝑔 1o ( ( 1o𝑔 ∅ ) ∧𝑔𝑔 2o ( ( 2o𝑔 1o ) →𝑔 ¬𝑔 ( 2o𝑔 ∅ ) ) ) )
17 0 16 wceq AxReg = ( ∃𝑔 1o ( 1o𝑔 ∅ ) →𝑔𝑔 1o ( ( 1o𝑔 ∅ ) ∧𝑔𝑔 2o ( ( 2o𝑔 1o ) →𝑔 ¬𝑔 ( 2o𝑔 ∅ ) ) ) )