| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cgzg |
⊢ AxReg |
| 1 |
|
c1o |
⊢ 1o |
| 2 |
|
cgoe |
⊢ ∈𝑔 |
| 3 |
|
c0 |
⊢ ∅ |
| 4 |
1 3 2
|
co |
⊢ ( 1o ∈𝑔 ∅ ) |
| 5 |
4 1
|
cgox |
⊢ ∃𝑔 1o ( 1o ∈𝑔 ∅ ) |
| 6 |
|
cgoi |
⊢ →𝑔 |
| 7 |
|
cgoa |
⊢ ∧𝑔 |
| 8 |
|
c2o |
⊢ 2o |
| 9 |
8 1 2
|
co |
⊢ ( 2o ∈𝑔 1o ) |
| 10 |
8 3 2
|
co |
⊢ ( 2o ∈𝑔 ∅ ) |
| 11 |
10
|
cgon |
⊢ ¬𝑔 ( 2o ∈𝑔 ∅ ) |
| 12 |
9 11 6
|
co |
⊢ ( ( 2o ∈𝑔 1o ) →𝑔 ¬𝑔 ( 2o ∈𝑔 ∅ ) ) |
| 13 |
12 8
|
cgol |
⊢ ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ¬𝑔 ( 2o ∈𝑔 ∅ ) ) |
| 14 |
4 13 7
|
co |
⊢ ( ( 1o ∈𝑔 ∅ ) ∧𝑔 ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ¬𝑔 ( 2o ∈𝑔 ∅ ) ) ) |
| 15 |
14 1
|
cgox |
⊢ ∃𝑔 1o ( ( 1o ∈𝑔 ∅ ) ∧𝑔 ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ¬𝑔 ( 2o ∈𝑔 ∅ ) ) ) |
| 16 |
5 15 6
|
co |
⊢ ( ∃𝑔 1o ( 1o ∈𝑔 ∅ ) →𝑔 ∃𝑔 1o ( ( 1o ∈𝑔 ∅ ) ∧𝑔 ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ¬𝑔 ( 2o ∈𝑔 ∅ ) ) ) ) |
| 17 |
0 16
|
wceq |
⊢ AxReg = ( ∃𝑔 1o ( 1o ∈𝑔 ∅ ) →𝑔 ∃𝑔 1o ( ( 1o ∈𝑔 ∅ ) ∧𝑔 ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ¬𝑔 ( 2o ∈𝑔 ∅ ) ) ) ) |