Step |
Hyp |
Ref |
Expression |
0 |
|
cgzg |
⊢ AxReg |
1 |
|
c1o |
⊢ 1o |
2 |
|
cgoe |
⊢ ∈𝑔 |
3 |
|
c0 |
⊢ ∅ |
4 |
1 3 2
|
co |
⊢ ( 1o ∈𝑔 ∅ ) |
5 |
4 1
|
cgox |
⊢ ∃𝑔 1o ( 1o ∈𝑔 ∅ ) |
6 |
|
cgoi |
⊢ →𝑔 |
7 |
|
cgoa |
⊢ ∧𝑔 |
8 |
|
c2o |
⊢ 2o |
9 |
8 1 2
|
co |
⊢ ( 2o ∈𝑔 1o ) |
10 |
8 3 2
|
co |
⊢ ( 2o ∈𝑔 ∅ ) |
11 |
10
|
cgon |
⊢ ¬𝑔 ( 2o ∈𝑔 ∅ ) |
12 |
9 11 6
|
co |
⊢ ( ( 2o ∈𝑔 1o ) →𝑔 ¬𝑔 ( 2o ∈𝑔 ∅ ) ) |
13 |
12 8
|
cgol |
⊢ ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ¬𝑔 ( 2o ∈𝑔 ∅ ) ) |
14 |
4 13 7
|
co |
⊢ ( ( 1o ∈𝑔 ∅ ) ∧𝑔 ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ¬𝑔 ( 2o ∈𝑔 ∅ ) ) ) |
15 |
14 1
|
cgox |
⊢ ∃𝑔 1o ( ( 1o ∈𝑔 ∅ ) ∧𝑔 ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ¬𝑔 ( 2o ∈𝑔 ∅ ) ) ) |
16 |
5 15 6
|
co |
⊢ ( ∃𝑔 1o ( 1o ∈𝑔 ∅ ) →𝑔 ∃𝑔 1o ( ( 1o ∈𝑔 ∅ ) ∧𝑔 ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ¬𝑔 ( 2o ∈𝑔 ∅ ) ) ) ) |
17 |
0 16
|
wceq |
⊢ AxReg = ( ∃𝑔 1o ( 1o ∈𝑔 ∅ ) →𝑔 ∃𝑔 1o ( ( 1o ∈𝑔 ∅ ) ∧𝑔 ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ¬𝑔 ( 2o ∈𝑔 ∅ ) ) ) ) |