Metamath Proof Explorer


Definition df-gzinf

Description: The Godel-set version of the Axiom of Infinity. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gzinf AxInf = ∃𝑔 1o ( ( ∅ ∈𝑔 1o ) ∧𝑔𝑔 2o ( ( 2o𝑔 1o ) →𝑔𝑔 ∅ ( ( 2o𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgzi AxInf
1 c1o 1o
2 c0
3 cgoe 𝑔
4 2 1 3 co ( ∅ ∈𝑔 1o )
5 cgoa 𝑔
6 c2o 2o
7 6 1 3 co ( 2o𝑔 1o )
8 cgoi 𝑔
9 6 2 3 co ( 2o𝑔 ∅ )
10 9 4 5 co ( ( 2o𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) )
11 10 2 cgox 𝑔 ∅ ( ( 2o𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) )
12 7 11 8 co ( ( 2o𝑔 1o ) →𝑔𝑔 ∅ ( ( 2o𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) )
13 12 6 cgol 𝑔 2o ( ( 2o𝑔 1o ) →𝑔𝑔 ∅ ( ( 2o𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) )
14 4 13 5 co ( ( ∅ ∈𝑔 1o ) ∧𝑔𝑔 2o ( ( 2o𝑔 1o ) →𝑔𝑔 ∅ ( ( 2o𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) ) )
15 14 1 cgox 𝑔 1o ( ( ∅ ∈𝑔 1o ) ∧𝑔𝑔 2o ( ( 2o𝑔 1o ) →𝑔𝑔 ∅ ( ( 2o𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) ) )
16 0 15 wceq AxInf = ∃𝑔 1o ( ( ∅ ∈𝑔 1o ) ∧𝑔𝑔 2o ( ( 2o𝑔 1o ) →𝑔𝑔 ∅ ( ( 2o𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) ) )