| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cgzi |
⊢ AxInf |
| 1 |
|
c1o |
⊢ 1o |
| 2 |
|
c0 |
⊢ ∅ |
| 3 |
|
cgoe |
⊢ ∈𝑔 |
| 4 |
2 1 3
|
co |
⊢ ( ∅ ∈𝑔 1o ) |
| 5 |
|
cgoa |
⊢ ∧𝑔 |
| 6 |
|
c2o |
⊢ 2o |
| 7 |
6 1 3
|
co |
⊢ ( 2o ∈𝑔 1o ) |
| 8 |
|
cgoi |
⊢ →𝑔 |
| 9 |
6 2 3
|
co |
⊢ ( 2o ∈𝑔 ∅ ) |
| 10 |
9 4 5
|
co |
⊢ ( ( 2o ∈𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) |
| 11 |
10 2
|
cgox |
⊢ ∃𝑔 ∅ ( ( 2o ∈𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) |
| 12 |
7 11 8
|
co |
⊢ ( ( 2o ∈𝑔 1o ) →𝑔 ∃𝑔 ∅ ( ( 2o ∈𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) ) |
| 13 |
12 6
|
cgol |
⊢ ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ∃𝑔 ∅ ( ( 2o ∈𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) ) |
| 14 |
4 13 5
|
co |
⊢ ( ( ∅ ∈𝑔 1o ) ∧𝑔 ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ∃𝑔 ∅ ( ( 2o ∈𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) ) ) |
| 15 |
14 1
|
cgox |
⊢ ∃𝑔 1o ( ( ∅ ∈𝑔 1o ) ∧𝑔 ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ∃𝑔 ∅ ( ( 2o ∈𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) ) ) |
| 16 |
0 15
|
wceq |
⊢ AxInf = ∃𝑔 1o ( ( ∅ ∈𝑔 1o ) ∧𝑔 ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ∃𝑔 ∅ ( ( 2o ∈𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) ) ) |