Step |
Hyp |
Ref |
Expression |
0 |
|
cgzi |
⊢ AxInf |
1 |
|
c1o |
⊢ 1o |
2 |
|
c0 |
⊢ ∅ |
3 |
|
cgoe |
⊢ ∈𝑔 |
4 |
2 1 3
|
co |
⊢ ( ∅ ∈𝑔 1o ) |
5 |
|
cgoa |
⊢ ∧𝑔 |
6 |
|
c2o |
⊢ 2o |
7 |
6 1 3
|
co |
⊢ ( 2o ∈𝑔 1o ) |
8 |
|
cgoi |
⊢ →𝑔 |
9 |
6 2 3
|
co |
⊢ ( 2o ∈𝑔 ∅ ) |
10 |
9 4 5
|
co |
⊢ ( ( 2o ∈𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) |
11 |
10 2
|
cgox |
⊢ ∃𝑔 ∅ ( ( 2o ∈𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) |
12 |
7 11 8
|
co |
⊢ ( ( 2o ∈𝑔 1o ) →𝑔 ∃𝑔 ∅ ( ( 2o ∈𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) ) |
13 |
12 6
|
cgol |
⊢ ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ∃𝑔 ∅ ( ( 2o ∈𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) ) |
14 |
4 13 5
|
co |
⊢ ( ( ∅ ∈𝑔 1o ) ∧𝑔 ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ∃𝑔 ∅ ( ( 2o ∈𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) ) ) |
15 |
14 1
|
cgox |
⊢ ∃𝑔 1o ( ( ∅ ∈𝑔 1o ) ∧𝑔 ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ∃𝑔 ∅ ( ( 2o ∈𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) ) ) |
16 |
0 15
|
wceq |
⊢ AxInf = ∃𝑔 1o ( ( ∅ ∈𝑔 1o ) ∧𝑔 ∀𝑔 2o ( ( 2o ∈𝑔 1o ) →𝑔 ∃𝑔 ∅ ( ( 2o ∈𝑔 ∅ ) ∧𝑔 ( ∅ ∈𝑔 1o ) ) ) ) |