Step |
Hyp |
Ref |
Expression |
0 |
|
cgzi |
|- AxInf |
1 |
|
c1o |
|- 1o |
2 |
|
c0 |
|- (/) |
3 |
|
cgoe |
|- e.g |
4 |
2 1 3
|
co |
|- ( (/) e.g 1o ) |
5 |
|
cgoa |
|- /\g |
6 |
|
c2o |
|- 2o |
7 |
6 1 3
|
co |
|- ( 2o e.g 1o ) |
8 |
|
cgoi |
|- ->g |
9 |
6 2 3
|
co |
|- ( 2o e.g (/) ) |
10 |
9 4 5
|
co |
|- ( ( 2o e.g (/) ) /\g ( (/) e.g 1o ) ) |
11 |
10 2
|
cgox |
|- E.g (/) ( ( 2o e.g (/) ) /\g ( (/) e.g 1o ) ) |
12 |
7 11 8
|
co |
|- ( ( 2o e.g 1o ) ->g E.g (/) ( ( 2o e.g (/) ) /\g ( (/) e.g 1o ) ) ) |
13 |
12 6
|
cgol |
|- A.g 2o ( ( 2o e.g 1o ) ->g E.g (/) ( ( 2o e.g (/) ) /\g ( (/) e.g 1o ) ) ) |
14 |
4 13 5
|
co |
|- ( ( (/) e.g 1o ) /\g A.g 2o ( ( 2o e.g 1o ) ->g E.g (/) ( ( 2o e.g (/) ) /\g ( (/) e.g 1o ) ) ) ) |
15 |
14 1
|
cgox |
|- E.g 1o ( ( (/) e.g 1o ) /\g A.g 2o ( ( 2o e.g 1o ) ->g E.g (/) ( ( 2o e.g (/) ) /\g ( (/) e.g 1o ) ) ) ) |
16 |
0 15
|
wceq |
|- AxInf = E.g 1o ( ( (/) e.g 1o ) /\g A.g 2o ( ( 2o e.g 1o ) ->g E.g (/) ( ( 2o e.g (/) ) /\g ( (/) e.g 1o ) ) ) ) |