| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cgzi |
|- AxInf |
| 1 |
|
c1o |
|- 1o |
| 2 |
|
c0 |
|- (/) |
| 3 |
|
cgoe |
|- e.g |
| 4 |
2 1 3
|
co |
|- ( (/) e.g 1o ) |
| 5 |
|
cgoa |
|- /\g |
| 6 |
|
c2o |
|- 2o |
| 7 |
6 1 3
|
co |
|- ( 2o e.g 1o ) |
| 8 |
|
cgoi |
|- ->g |
| 9 |
6 2 3
|
co |
|- ( 2o e.g (/) ) |
| 10 |
9 4 5
|
co |
|- ( ( 2o e.g (/) ) /\g ( (/) e.g 1o ) ) |
| 11 |
10 2
|
cgox |
|- E.g (/) ( ( 2o e.g (/) ) /\g ( (/) e.g 1o ) ) |
| 12 |
7 11 8
|
co |
|- ( ( 2o e.g 1o ) ->g E.g (/) ( ( 2o e.g (/) ) /\g ( (/) e.g 1o ) ) ) |
| 13 |
12 6
|
cgol |
|- A.g 2o ( ( 2o e.g 1o ) ->g E.g (/) ( ( 2o e.g (/) ) /\g ( (/) e.g 1o ) ) ) |
| 14 |
4 13 5
|
co |
|- ( ( (/) e.g 1o ) /\g A.g 2o ( ( 2o e.g 1o ) ->g E.g (/) ( ( 2o e.g (/) ) /\g ( (/) e.g 1o ) ) ) ) |
| 15 |
14 1
|
cgox |
|- E.g 1o ( ( (/) e.g 1o ) /\g A.g 2o ( ( 2o e.g 1o ) ->g E.g (/) ( ( 2o e.g (/) ) /\g ( (/) e.g 1o ) ) ) ) |
| 16 |
0 15
|
wceq |
|- AxInf = E.g 1o ( ( (/) e.g 1o ) /\g A.g 2o ( ( 2o e.g 1o ) ->g E.g (/) ( ( 2o e.g (/) ) /\g ( (/) e.g 1o ) ) ) ) |