Metamath Proof Explorer


Definition df-gzinf

Description: The Godel-set version of the Axiom of Infinity. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gzinf AxInf = 𝑔 1 𝑜 𝑔 1 𝑜 𝑔 𝑔 2 𝑜 2 𝑜 𝑔 1 𝑜 𝑔 𝑔 2 𝑜 𝑔 𝑔 𝑔 1 𝑜

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgzi class AxInf
1 c1o class 1 𝑜
2 c0 class
3 cgoe class 𝑔
4 2 1 3 co class 𝑔 1 𝑜
5 cgoa class 𝑔
6 c2o class 2 𝑜
7 6 1 3 co class 2 𝑜 𝑔 1 𝑜
8 cgoi class 𝑔
9 6 2 3 co class 2 𝑜 𝑔
10 9 4 5 co class 2 𝑜 𝑔 𝑔 𝑔 1 𝑜
11 10 2 cgox class 𝑔 2 𝑜 𝑔 𝑔 𝑔 1 𝑜
12 7 11 8 co class 2 𝑜 𝑔 1 𝑜 𝑔 𝑔 2 𝑜 𝑔 𝑔 𝑔 1 𝑜
13 12 6 cgol class 𝑔 2 𝑜 2 𝑜 𝑔 1 𝑜 𝑔 𝑔 2 𝑜 𝑔 𝑔 𝑔 1 𝑜
14 4 13 5 co class 𝑔 1 𝑜 𝑔 𝑔 2 𝑜 2 𝑜 𝑔 1 𝑜 𝑔 𝑔 2 𝑜 𝑔 𝑔 𝑔 1 𝑜
15 14 1 cgox class 𝑔 1 𝑜 𝑔 1 𝑜 𝑔 𝑔 2 𝑜 2 𝑜 𝑔 1 𝑜 𝑔 𝑔 2 𝑜 𝑔 𝑔 𝑔 1 𝑜
16 0 15 wceq wff AxInf = 𝑔 1 𝑜 𝑔 1 𝑜 𝑔 𝑔 2 𝑜 2 𝑜 𝑔 1 𝑜 𝑔 𝑔 2 𝑜 𝑔 𝑔 𝑔 1 𝑜