Metamath Proof Explorer


Definition df-gzreg

Description: The Godel-set version of the Axiom of Regularity. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gzreg AxReg = 𝑔 1 𝑜 1 𝑜 𝑔 𝑔 𝑔 1 𝑜 1 𝑜 𝑔 𝑔 𝑔 2 𝑜 2 𝑜 𝑔 1 𝑜 𝑔 ¬ 𝑔 2 𝑜 𝑔

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgzg class AxReg
1 c1o class 1 𝑜
2 cgoe class 𝑔
3 c0 class
4 1 3 2 co class 1 𝑜 𝑔
5 4 1 cgox class 𝑔 1 𝑜 1 𝑜 𝑔
6 cgoi class 𝑔
7 cgoa class 𝑔
8 c2o class 2 𝑜
9 8 1 2 co class 2 𝑜 𝑔 1 𝑜
10 8 3 2 co class 2 𝑜 𝑔
11 10 cgon class ¬ 𝑔 2 𝑜 𝑔
12 9 11 6 co class 2 𝑜 𝑔 1 𝑜 𝑔 ¬ 𝑔 2 𝑜 𝑔
13 12 8 cgol class 𝑔 2 𝑜 2 𝑜 𝑔 1 𝑜 𝑔 ¬ 𝑔 2 𝑜 𝑔
14 4 13 7 co class 1 𝑜 𝑔 𝑔 𝑔 2 𝑜 2 𝑜 𝑔 1 𝑜 𝑔 ¬ 𝑔 2 𝑜 𝑔
15 14 1 cgox class 𝑔 1 𝑜 1 𝑜 𝑔 𝑔 𝑔 2 𝑜 2 𝑜 𝑔 1 𝑜 𝑔 ¬ 𝑔 2 𝑜 𝑔
16 5 15 6 co class 𝑔 1 𝑜 1 𝑜 𝑔 𝑔 𝑔 1 𝑜 1 𝑜 𝑔 𝑔 𝑔 2 𝑜 2 𝑜 𝑔 1 𝑜 𝑔 ¬ 𝑔 2 𝑜 𝑔
17 0 16 wceq wff AxReg = 𝑔 1 𝑜 1 𝑜 𝑔 𝑔 𝑔 1 𝑜 1 𝑜 𝑔 𝑔 𝑔 2 𝑜 2 𝑜 𝑔 1 𝑜 𝑔 ¬ 𝑔 2 𝑜 𝑔