| Step |
Hyp |
Ref |
Expression |
| 0 |
|
chcmp |
|- HCmp |
| 1 |
|
vu |
|- u |
| 2 |
|
vw |
|- w |
| 3 |
1
|
cv |
|- u |
| 4 |
|
cust |
|- UnifOn |
| 5 |
4
|
crn |
|- ran UnifOn |
| 6 |
5
|
cuni |
|- U. ran UnifOn |
| 7 |
3 6
|
wcel |
|- u e. U. ran UnifOn |
| 8 |
2
|
cv |
|- w |
| 9 |
|
ccusp |
|- CUnifSp |
| 10 |
8 9
|
wcel |
|- w e. CUnifSp |
| 11 |
7 10
|
wa |
|- ( u e. U. ran UnifOn /\ w e. CUnifSp ) |
| 12 |
|
cuss |
|- UnifSt |
| 13 |
8 12
|
cfv |
|- ( UnifSt ` w ) |
| 14 |
|
crest |
|- |`t |
| 15 |
3
|
cuni |
|- U. u |
| 16 |
15
|
cdm |
|- dom U. u |
| 17 |
13 16 14
|
co |
|- ( ( UnifSt ` w ) |`t dom U. u ) |
| 18 |
17 3
|
wceq |
|- ( ( UnifSt ` w ) |`t dom U. u ) = u |
| 19 |
|
ccl |
|- cls |
| 20 |
|
ctopn |
|- TopOpen |
| 21 |
8 20
|
cfv |
|- ( TopOpen ` w ) |
| 22 |
21 19
|
cfv |
|- ( cls ` ( TopOpen ` w ) ) |
| 23 |
16 22
|
cfv |
|- ( ( cls ` ( TopOpen ` w ) ) ` dom U. u ) |
| 24 |
|
cbs |
|- Base |
| 25 |
8 24
|
cfv |
|- ( Base ` w ) |
| 26 |
23 25
|
wceq |
|- ( ( cls ` ( TopOpen ` w ) ) ` dom U. u ) = ( Base ` w ) |
| 27 |
11 18 26
|
w3a |
|- ( ( u e. U. ran UnifOn /\ w e. CUnifSp ) /\ ( ( UnifSt ` w ) |`t dom U. u ) = u /\ ( ( cls ` ( TopOpen ` w ) ) ` dom U. u ) = ( Base ` w ) ) |
| 28 |
27 1 2
|
copab |
|- { <. u , w >. | ( ( u e. U. ran UnifOn /\ w e. CUnifSp ) /\ ( ( UnifSt ` w ) |`t dom U. u ) = u /\ ( ( cls ` ( TopOpen ` w ) ) ` dom U. u ) = ( Base ` w ) ) } |
| 29 |
0 28
|
wceq |
|- HCmp = { <. u , w >. | ( ( u e. U. ran UnifOn /\ w e. CUnifSp ) /\ ( ( UnifSt ` w ) |`t dom U. u ) = u /\ ( ( cls ` ( TopOpen ` w ) ) ` dom U. u ) = ( Base ` w ) ) } |