| Step | Hyp | Ref | Expression | 
						
							| 0 |  | chcmp |  |-  HCmp | 
						
							| 1 |  | vu |  |-  u | 
						
							| 2 |  | vw |  |-  w | 
						
							| 3 | 1 | cv |  |-  u | 
						
							| 4 |  | cust |  |-  UnifOn | 
						
							| 5 | 4 | crn |  |-  ran UnifOn | 
						
							| 6 | 5 | cuni |  |-  U. ran UnifOn | 
						
							| 7 | 3 6 | wcel |  |-  u e. U. ran UnifOn | 
						
							| 8 | 2 | cv |  |-  w | 
						
							| 9 |  | ccusp |  |-  CUnifSp | 
						
							| 10 | 8 9 | wcel |  |-  w e. CUnifSp | 
						
							| 11 | 7 10 | wa |  |-  ( u e. U. ran UnifOn /\ w e. CUnifSp ) | 
						
							| 12 |  | cuss |  |-  UnifSt | 
						
							| 13 | 8 12 | cfv |  |-  ( UnifSt ` w ) | 
						
							| 14 |  | crest |  |-  |`t | 
						
							| 15 | 3 | cuni |  |-  U. u | 
						
							| 16 | 15 | cdm |  |-  dom U. u | 
						
							| 17 | 13 16 14 | co |  |-  ( ( UnifSt ` w ) |`t dom U. u ) | 
						
							| 18 | 17 3 | wceq |  |-  ( ( UnifSt ` w ) |`t dom U. u ) = u | 
						
							| 19 |  | ccl |  |-  cls | 
						
							| 20 |  | ctopn |  |-  TopOpen | 
						
							| 21 | 8 20 | cfv |  |-  ( TopOpen ` w ) | 
						
							| 22 | 21 19 | cfv |  |-  ( cls ` ( TopOpen ` w ) ) | 
						
							| 23 | 16 22 | cfv |  |-  ( ( cls ` ( TopOpen ` w ) ) ` dom U. u ) | 
						
							| 24 |  | cbs |  |-  Base | 
						
							| 25 | 8 24 | cfv |  |-  ( Base ` w ) | 
						
							| 26 | 23 25 | wceq |  |-  ( ( cls ` ( TopOpen ` w ) ) ` dom U. u ) = ( Base ` w ) | 
						
							| 27 | 11 18 26 | w3a |  |-  ( ( u e. U. ran UnifOn /\ w e. CUnifSp ) /\ ( ( UnifSt ` w ) |`t dom U. u ) = u /\ ( ( cls ` ( TopOpen ` w ) ) ` dom U. u ) = ( Base ` w ) ) | 
						
							| 28 | 27 1 2 | copab |  |-  { <. u , w >. | ( ( u e. U. ran UnifOn /\ w e. CUnifSp ) /\ ( ( UnifSt ` w ) |`t dom U. u ) = u /\ ( ( cls ` ( TopOpen ` w ) ) ` dom U. u ) = ( Base ` w ) ) } | 
						
							| 29 | 0 28 | wceq |  |-  HCmp = { <. u , w >. | ( ( u e. U. ran UnifOn /\ w e. CUnifSp ) /\ ( ( UnifSt ` w ) |`t dom U. u ) = u /\ ( ( cls ` ( TopOpen ` w ) ) ` dom U. u ) = ( Base ` w ) ) } |