Metamath Proof Explorer


Definition df-hcmp

Description: Definition of the Hausdorff completion. In this definition, a structure w is a Hausdorff completion of a uniform structure u if w is a complete uniform space, in which u is dense, and which admits the same uniform structure. Theorem 3 of BourbakiTop1 p. II.21. states the existence and uniqueness of such a completion. (Contributed by Thierry Arnoux, 5-Mar-2018)

Ref Expression
Assertion df-hcmp
|- HCmp = { <. u , w >. | ( ( u e. U. ran UnifOn /\ w e. CUnifSp ) /\ ( ( UnifSt ` w ) |`t dom U. u ) = u /\ ( ( cls ` ( TopOpen ` w ) ) ` dom U. u ) = ( Base ` w ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 chcmp
 |-  HCmp
1 vu
 |-  u
2 vw
 |-  w
3 1 cv
 |-  u
4 cust
 |-  UnifOn
5 4 crn
 |-  ran UnifOn
6 5 cuni
 |-  U. ran UnifOn
7 3 6 wcel
 |-  u e. U. ran UnifOn
8 2 cv
 |-  w
9 ccusp
 |-  CUnifSp
10 8 9 wcel
 |-  w e. CUnifSp
11 7 10 wa
 |-  ( u e. U. ran UnifOn /\ w e. CUnifSp )
12 cuss
 |-  UnifSt
13 8 12 cfv
 |-  ( UnifSt ` w )
14 crest
 |-  |`t
15 3 cuni
 |-  U. u
16 15 cdm
 |-  dom U. u
17 13 16 14 co
 |-  ( ( UnifSt ` w ) |`t dom U. u )
18 17 3 wceq
 |-  ( ( UnifSt ` w ) |`t dom U. u ) = u
19 ccl
 |-  cls
20 ctopn
 |-  TopOpen
21 8 20 cfv
 |-  ( TopOpen ` w )
22 21 19 cfv
 |-  ( cls ` ( TopOpen ` w ) )
23 16 22 cfv
 |-  ( ( cls ` ( TopOpen ` w ) ) ` dom U. u )
24 cbs
 |-  Base
25 8 24 cfv
 |-  ( Base ` w )
26 23 25 wceq
 |-  ( ( cls ` ( TopOpen ` w ) ) ` dom U. u ) = ( Base ` w )
27 11 18 26 w3a
 |-  ( ( u e. U. ran UnifOn /\ w e. CUnifSp ) /\ ( ( UnifSt ` w ) |`t dom U. u ) = u /\ ( ( cls ` ( TopOpen ` w ) ) ` dom U. u ) = ( Base ` w ) )
28 27 1 2 copab
 |-  { <. u , w >. | ( ( u e. U. ran UnifOn /\ w e. CUnifSp ) /\ ( ( UnifSt ` w ) |`t dom U. u ) = u /\ ( ( cls ` ( TopOpen ` w ) ) ` dom U. u ) = ( Base ` w ) ) }
29 0 28 wceq
 |-  HCmp = { <. u , w >. | ( ( u e. U. ran UnifOn /\ w e. CUnifSp ) /\ ( ( UnifSt ` w ) |`t dom U. u ) = u /\ ( ( cls ` ( TopOpen ` w ) ) ` dom U. u ) = ( Base ` w ) ) }