| Step | Hyp | Ref | Expression | 
						
							| 0 |  | chcmp | ⊢ HCmp | 
						
							| 1 |  | vu | ⊢ 𝑢 | 
						
							| 2 |  | vw | ⊢ 𝑤 | 
						
							| 3 | 1 | cv | ⊢ 𝑢 | 
						
							| 4 |  | cust | ⊢ UnifOn | 
						
							| 5 | 4 | crn | ⊢ ran  UnifOn | 
						
							| 6 | 5 | cuni | ⊢ ∪  ran  UnifOn | 
						
							| 7 | 3 6 | wcel | ⊢ 𝑢  ∈  ∪  ran  UnifOn | 
						
							| 8 | 2 | cv | ⊢ 𝑤 | 
						
							| 9 |  | ccusp | ⊢ CUnifSp | 
						
							| 10 | 8 9 | wcel | ⊢ 𝑤  ∈  CUnifSp | 
						
							| 11 | 7 10 | wa | ⊢ ( 𝑢  ∈  ∪  ran  UnifOn  ∧  𝑤  ∈  CUnifSp ) | 
						
							| 12 |  | cuss | ⊢ UnifSt | 
						
							| 13 | 8 12 | cfv | ⊢ ( UnifSt ‘ 𝑤 ) | 
						
							| 14 |  | crest | ⊢  ↾t | 
						
							| 15 | 3 | cuni | ⊢ ∪  𝑢 | 
						
							| 16 | 15 | cdm | ⊢ dom  ∪  𝑢 | 
						
							| 17 | 13 16 14 | co | ⊢ ( ( UnifSt ‘ 𝑤 )  ↾t  dom  ∪  𝑢 ) | 
						
							| 18 | 17 3 | wceq | ⊢ ( ( UnifSt ‘ 𝑤 )  ↾t  dom  ∪  𝑢 )  =  𝑢 | 
						
							| 19 |  | ccl | ⊢ cls | 
						
							| 20 |  | ctopn | ⊢ TopOpen | 
						
							| 21 | 8 20 | cfv | ⊢ ( TopOpen ‘ 𝑤 ) | 
						
							| 22 | 21 19 | cfv | ⊢ ( cls ‘ ( TopOpen ‘ 𝑤 ) ) | 
						
							| 23 | 16 22 | cfv | ⊢ ( ( cls ‘ ( TopOpen ‘ 𝑤 ) ) ‘ dom  ∪  𝑢 ) | 
						
							| 24 |  | cbs | ⊢ Base | 
						
							| 25 | 8 24 | cfv | ⊢ ( Base ‘ 𝑤 ) | 
						
							| 26 | 23 25 | wceq | ⊢ ( ( cls ‘ ( TopOpen ‘ 𝑤 ) ) ‘ dom  ∪  𝑢 )  =  ( Base ‘ 𝑤 ) | 
						
							| 27 | 11 18 26 | w3a | ⊢ ( ( 𝑢  ∈  ∪  ran  UnifOn  ∧  𝑤  ∈  CUnifSp )  ∧  ( ( UnifSt ‘ 𝑤 )  ↾t  dom  ∪  𝑢 )  =  𝑢  ∧  ( ( cls ‘ ( TopOpen ‘ 𝑤 ) ) ‘ dom  ∪  𝑢 )  =  ( Base ‘ 𝑤 ) ) | 
						
							| 28 | 27 1 2 | copab | ⊢ { 〈 𝑢 ,  𝑤 〉  ∣  ( ( 𝑢  ∈  ∪  ran  UnifOn  ∧  𝑤  ∈  CUnifSp )  ∧  ( ( UnifSt ‘ 𝑤 )  ↾t  dom  ∪  𝑢 )  =  𝑢  ∧  ( ( cls ‘ ( TopOpen ‘ 𝑤 ) ) ‘ dom  ∪  𝑢 )  =  ( Base ‘ 𝑤 ) ) } | 
						
							| 29 | 0 28 | wceq | ⊢ HCmp  =  { 〈 𝑢 ,  𝑤 〉  ∣  ( ( 𝑢  ∈  ∪  ran  UnifOn  ∧  𝑤  ∈  CUnifSp )  ∧  ( ( UnifSt ‘ 𝑤 )  ↾t  dom  ∪  𝑢 )  =  𝑢  ∧  ( ( cls ‘ ( TopOpen ‘ 𝑤 ) ) ‘ dom  ∪  𝑢 )  =  ( Base ‘ 𝑤 ) ) } |