Step |
Hyp |
Ref |
Expression |
0 |
|
chcmp |
⊢ HCmp |
1 |
|
vu |
⊢ 𝑢 |
2 |
|
vw |
⊢ 𝑤 |
3 |
1
|
cv |
⊢ 𝑢 |
4 |
|
cust |
⊢ UnifOn |
5 |
4
|
crn |
⊢ ran UnifOn |
6 |
5
|
cuni |
⊢ ∪ ran UnifOn |
7 |
3 6
|
wcel |
⊢ 𝑢 ∈ ∪ ran UnifOn |
8 |
2
|
cv |
⊢ 𝑤 |
9 |
|
ccusp |
⊢ CUnifSp |
10 |
8 9
|
wcel |
⊢ 𝑤 ∈ CUnifSp |
11 |
7 10
|
wa |
⊢ ( 𝑢 ∈ ∪ ran UnifOn ∧ 𝑤 ∈ CUnifSp ) |
12 |
|
cuss |
⊢ UnifSt |
13 |
8 12
|
cfv |
⊢ ( UnifSt ‘ 𝑤 ) |
14 |
|
crest |
⊢ ↾t |
15 |
3
|
cuni |
⊢ ∪ 𝑢 |
16 |
15
|
cdm |
⊢ dom ∪ 𝑢 |
17 |
13 16 14
|
co |
⊢ ( ( UnifSt ‘ 𝑤 ) ↾t dom ∪ 𝑢 ) |
18 |
17 3
|
wceq |
⊢ ( ( UnifSt ‘ 𝑤 ) ↾t dom ∪ 𝑢 ) = 𝑢 |
19 |
|
ccl |
⊢ cls |
20 |
|
ctopn |
⊢ TopOpen |
21 |
8 20
|
cfv |
⊢ ( TopOpen ‘ 𝑤 ) |
22 |
21 19
|
cfv |
⊢ ( cls ‘ ( TopOpen ‘ 𝑤 ) ) |
23 |
16 22
|
cfv |
⊢ ( ( cls ‘ ( TopOpen ‘ 𝑤 ) ) ‘ dom ∪ 𝑢 ) |
24 |
|
cbs |
⊢ Base |
25 |
8 24
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
26 |
23 25
|
wceq |
⊢ ( ( cls ‘ ( TopOpen ‘ 𝑤 ) ) ‘ dom ∪ 𝑢 ) = ( Base ‘ 𝑤 ) |
27 |
11 18 26
|
w3a |
⊢ ( ( 𝑢 ∈ ∪ ran UnifOn ∧ 𝑤 ∈ CUnifSp ) ∧ ( ( UnifSt ‘ 𝑤 ) ↾t dom ∪ 𝑢 ) = 𝑢 ∧ ( ( cls ‘ ( TopOpen ‘ 𝑤 ) ) ‘ dom ∪ 𝑢 ) = ( Base ‘ 𝑤 ) ) |
28 |
27 1 2
|
copab |
⊢ { 〈 𝑢 , 𝑤 〉 ∣ ( ( 𝑢 ∈ ∪ ran UnifOn ∧ 𝑤 ∈ CUnifSp ) ∧ ( ( UnifSt ‘ 𝑤 ) ↾t dom ∪ 𝑢 ) = 𝑢 ∧ ( ( cls ‘ ( TopOpen ‘ 𝑤 ) ) ‘ dom ∪ 𝑢 ) = ( Base ‘ 𝑤 ) ) } |
29 |
0 28
|
wceq |
⊢ HCmp = { 〈 𝑢 , 𝑤 〉 ∣ ( ( 𝑢 ∈ ∪ ran UnifOn ∧ 𝑤 ∈ CUnifSp ) ∧ ( ( UnifSt ‘ 𝑤 ) ↾t dom ∪ 𝑢 ) = 𝑢 ∧ ( ( cls ‘ ( TopOpen ‘ 𝑤 ) ) ‘ dom ∪ 𝑢 ) = ( Base ‘ 𝑤 ) ) } |