Metamath Proof Explorer


Definition df-hcmp

Description: Definition of the Hausdorff completion. In this definition, a structure w is a Hausdorff completion of a uniform structure u if w is a complete uniform space, in which u is dense, and which admits the same uniform structure. Theorem 3 of BourbakiTop1 p. II.21. states the existence and uniqueness of such a completion. (Contributed by Thierry Arnoux, 5-Mar-2018)

Ref Expression
Assertion df-hcmp HCmp = { ⟨ 𝑢 , 𝑤 ⟩ ∣ ( ( 𝑢 ran UnifOn ∧ 𝑤 ∈ CUnifSp ) ∧ ( ( UnifSt ‘ 𝑤 ) ↾t dom 𝑢 ) = 𝑢 ∧ ( ( cls ‘ ( TopOpen ‘ 𝑤 ) ) ‘ dom 𝑢 ) = ( Base ‘ 𝑤 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 chcmp HCmp
1 vu 𝑢
2 vw 𝑤
3 1 cv 𝑢
4 cust UnifOn
5 4 crn ran UnifOn
6 5 cuni ran UnifOn
7 3 6 wcel 𝑢 ran UnifOn
8 2 cv 𝑤
9 ccusp CUnifSp
10 8 9 wcel 𝑤 ∈ CUnifSp
11 7 10 wa ( 𝑢 ran UnifOn ∧ 𝑤 ∈ CUnifSp )
12 cuss UnifSt
13 8 12 cfv ( UnifSt ‘ 𝑤 )
14 crest t
15 3 cuni 𝑢
16 15 cdm dom 𝑢
17 13 16 14 co ( ( UnifSt ‘ 𝑤 ) ↾t dom 𝑢 )
18 17 3 wceq ( ( UnifSt ‘ 𝑤 ) ↾t dom 𝑢 ) = 𝑢
19 ccl cls
20 ctopn TopOpen
21 8 20 cfv ( TopOpen ‘ 𝑤 )
22 21 19 cfv ( cls ‘ ( TopOpen ‘ 𝑤 ) )
23 16 22 cfv ( ( cls ‘ ( TopOpen ‘ 𝑤 ) ) ‘ dom 𝑢 )
24 cbs Base
25 8 24 cfv ( Base ‘ 𝑤 )
26 23 25 wceq ( ( cls ‘ ( TopOpen ‘ 𝑤 ) ) ‘ dom 𝑢 ) = ( Base ‘ 𝑤 )
27 11 18 26 w3a ( ( 𝑢 ran UnifOn ∧ 𝑤 ∈ CUnifSp ) ∧ ( ( UnifSt ‘ 𝑤 ) ↾t dom 𝑢 ) = 𝑢 ∧ ( ( cls ‘ ( TopOpen ‘ 𝑤 ) ) ‘ dom 𝑢 ) = ( Base ‘ 𝑤 ) )
28 27 1 2 copab { ⟨ 𝑢 , 𝑤 ⟩ ∣ ( ( 𝑢 ran UnifOn ∧ 𝑤 ∈ CUnifSp ) ∧ ( ( UnifSt ‘ 𝑤 ) ↾t dom 𝑢 ) = 𝑢 ∧ ( ( cls ‘ ( TopOpen ‘ 𝑤 ) ) ‘ dom 𝑢 ) = ( Base ‘ 𝑤 ) ) }
29 0 28 wceq HCmp = { ⟨ 𝑢 , 𝑤 ⟩ ∣ ( ( 𝑢 ran UnifOn ∧ 𝑤 ∈ CUnifSp ) ∧ ( ( UnifSt ‘ 𝑤 ) ↾t dom 𝑢 ) = 𝑢 ∧ ( ( cls ‘ ( TopOpen ‘ 𝑤 ) ) ‘ dom 𝑢 ) = ( Base ‘ 𝑤 ) ) }