| Step | Hyp | Ref | Expression | 
						
							| 0 |  | chg |  |-  HGMap | 
						
							| 1 |  | vk |  |-  k | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vw |  |-  w | 
						
							| 4 |  | clh |  |-  LHyp | 
						
							| 5 | 1 | cv |  |-  k | 
						
							| 6 | 5 4 | cfv |  |-  ( LHyp ` k ) | 
						
							| 7 |  | va |  |-  a | 
						
							| 8 |  | cdvh |  |-  DVecH | 
						
							| 9 | 5 8 | cfv |  |-  ( DVecH ` k ) | 
						
							| 10 | 3 | cv |  |-  w | 
						
							| 11 | 10 9 | cfv |  |-  ( ( DVecH ` k ) ` w ) | 
						
							| 12 |  | vu |  |-  u | 
						
							| 13 |  | cbs |  |-  Base | 
						
							| 14 |  | csca |  |-  Scalar | 
						
							| 15 | 12 | cv |  |-  u | 
						
							| 16 | 15 14 | cfv |  |-  ( Scalar ` u ) | 
						
							| 17 | 16 13 | cfv |  |-  ( Base ` ( Scalar ` u ) ) | 
						
							| 18 |  | vb |  |-  b | 
						
							| 19 |  | chdma |  |-  HDMap | 
						
							| 20 | 5 19 | cfv |  |-  ( HDMap ` k ) | 
						
							| 21 | 10 20 | cfv |  |-  ( ( HDMap ` k ) ` w ) | 
						
							| 22 |  | vm |  |-  m | 
						
							| 23 | 7 | cv |  |-  a | 
						
							| 24 |  | vx |  |-  x | 
						
							| 25 | 18 | cv |  |-  b | 
						
							| 26 |  | vy |  |-  y | 
						
							| 27 |  | vv |  |-  v | 
						
							| 28 | 15 13 | cfv |  |-  ( Base ` u ) | 
						
							| 29 | 22 | cv |  |-  m | 
						
							| 30 | 24 | cv |  |-  x | 
						
							| 31 |  | cvsca |  |-  .s | 
						
							| 32 | 15 31 | cfv |  |-  ( .s ` u ) | 
						
							| 33 | 27 | cv |  |-  v | 
						
							| 34 | 30 33 32 | co |  |-  ( x ( .s ` u ) v ) | 
						
							| 35 | 34 29 | cfv |  |-  ( m ` ( x ( .s ` u ) v ) ) | 
						
							| 36 | 26 | cv |  |-  y | 
						
							| 37 |  | clcd |  |-  LCDual | 
						
							| 38 | 5 37 | cfv |  |-  ( LCDual ` k ) | 
						
							| 39 | 10 38 | cfv |  |-  ( ( LCDual ` k ) ` w ) | 
						
							| 40 | 39 31 | cfv |  |-  ( .s ` ( ( LCDual ` k ) ` w ) ) | 
						
							| 41 | 33 29 | cfv |  |-  ( m ` v ) | 
						
							| 42 | 36 41 40 | co |  |-  ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) | 
						
							| 43 | 35 42 | wceq |  |-  ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) | 
						
							| 44 | 43 27 28 | wral |  |-  A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) | 
						
							| 45 | 44 26 25 | crio |  |-  ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) | 
						
							| 46 | 24 25 45 | cmpt |  |-  ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) | 
						
							| 47 | 23 46 | wcel |  |-  a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) | 
						
							| 48 | 47 22 21 | wsbc |  |-  [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) | 
						
							| 49 | 48 18 17 | wsbc |  |-  [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) | 
						
							| 50 | 49 12 11 | wsbc |  |-  [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) | 
						
							| 51 | 50 7 | cab |  |-  { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) } | 
						
							| 52 | 3 6 51 | cmpt |  |-  ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) } ) | 
						
							| 53 | 1 2 52 | cmpt |  |-  ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) } ) ) | 
						
							| 54 | 0 53 | wceq |  |-  HGMap = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) } ) ) |