Metamath Proof Explorer


Definition df-hgmap

Description: Define map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015)

Ref Expression
Assertion df-hgmap
|- HGMap = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chg
 |-  HGMap
1 vk
 |-  k
2 cvv
 |-  _V
3 vw
 |-  w
4 clh
 |-  LHyp
5 1 cv
 |-  k
6 5 4 cfv
 |-  ( LHyp ` k )
7 va
 |-  a
8 cdvh
 |-  DVecH
9 5 8 cfv
 |-  ( DVecH ` k )
10 3 cv
 |-  w
11 10 9 cfv
 |-  ( ( DVecH ` k ) ` w )
12 vu
 |-  u
13 cbs
 |-  Base
14 csca
 |-  Scalar
15 12 cv
 |-  u
16 15 14 cfv
 |-  ( Scalar ` u )
17 16 13 cfv
 |-  ( Base ` ( Scalar ` u ) )
18 vb
 |-  b
19 chdma
 |-  HDMap
20 5 19 cfv
 |-  ( HDMap ` k )
21 10 20 cfv
 |-  ( ( HDMap ` k ) ` w )
22 vm
 |-  m
23 7 cv
 |-  a
24 vx
 |-  x
25 18 cv
 |-  b
26 vy
 |-  y
27 vv
 |-  v
28 15 13 cfv
 |-  ( Base ` u )
29 22 cv
 |-  m
30 24 cv
 |-  x
31 cvsca
 |-  .s
32 15 31 cfv
 |-  ( .s ` u )
33 27 cv
 |-  v
34 30 33 32 co
 |-  ( x ( .s ` u ) v )
35 34 29 cfv
 |-  ( m ` ( x ( .s ` u ) v ) )
36 26 cv
 |-  y
37 clcd
 |-  LCDual
38 5 37 cfv
 |-  ( LCDual ` k )
39 10 38 cfv
 |-  ( ( LCDual ` k ) ` w )
40 39 31 cfv
 |-  ( .s ` ( ( LCDual ` k ) ` w ) )
41 33 29 cfv
 |-  ( m ` v )
42 36 41 40 co
 |-  ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) )
43 35 42 wceq
 |-  ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) )
44 43 27 28 wral
 |-  A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) )
45 44 26 25 crio
 |-  ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) )
46 24 25 45 cmpt
 |-  ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) )
47 23 46 wcel
 |-  a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) )
48 47 22 21 wsbc
 |-  [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) )
49 48 18 17 wsbc
 |-  [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) )
50 49 12 11 wsbc
 |-  [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) )
51 50 7 cab
 |-  { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) }
52 3 6 51 cmpt
 |-  ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) } )
53 1 2 52 cmpt
 |-  ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) } ) )
54 0 53 wceq
 |-  HGMap = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) } ) )