| Step |
Hyp |
Ref |
Expression |
| 0 |
|
chg |
|- HGMap |
| 1 |
|
vk |
|- k |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vw |
|- w |
| 4 |
|
clh |
|- LHyp |
| 5 |
1
|
cv |
|- k |
| 6 |
5 4
|
cfv |
|- ( LHyp ` k ) |
| 7 |
|
va |
|- a |
| 8 |
|
cdvh |
|- DVecH |
| 9 |
5 8
|
cfv |
|- ( DVecH ` k ) |
| 10 |
3
|
cv |
|- w |
| 11 |
10 9
|
cfv |
|- ( ( DVecH ` k ) ` w ) |
| 12 |
|
vu |
|- u |
| 13 |
|
cbs |
|- Base |
| 14 |
|
csca |
|- Scalar |
| 15 |
12
|
cv |
|- u |
| 16 |
15 14
|
cfv |
|- ( Scalar ` u ) |
| 17 |
16 13
|
cfv |
|- ( Base ` ( Scalar ` u ) ) |
| 18 |
|
vb |
|- b |
| 19 |
|
chdma |
|- HDMap |
| 20 |
5 19
|
cfv |
|- ( HDMap ` k ) |
| 21 |
10 20
|
cfv |
|- ( ( HDMap ` k ) ` w ) |
| 22 |
|
vm |
|- m |
| 23 |
7
|
cv |
|- a |
| 24 |
|
vx |
|- x |
| 25 |
18
|
cv |
|- b |
| 26 |
|
vy |
|- y |
| 27 |
|
vv |
|- v |
| 28 |
15 13
|
cfv |
|- ( Base ` u ) |
| 29 |
22
|
cv |
|- m |
| 30 |
24
|
cv |
|- x |
| 31 |
|
cvsca |
|- .s |
| 32 |
15 31
|
cfv |
|- ( .s ` u ) |
| 33 |
27
|
cv |
|- v |
| 34 |
30 33 32
|
co |
|- ( x ( .s ` u ) v ) |
| 35 |
34 29
|
cfv |
|- ( m ` ( x ( .s ` u ) v ) ) |
| 36 |
26
|
cv |
|- y |
| 37 |
|
clcd |
|- LCDual |
| 38 |
5 37
|
cfv |
|- ( LCDual ` k ) |
| 39 |
10 38
|
cfv |
|- ( ( LCDual ` k ) ` w ) |
| 40 |
39 31
|
cfv |
|- ( .s ` ( ( LCDual ` k ) ` w ) ) |
| 41 |
33 29
|
cfv |
|- ( m ` v ) |
| 42 |
36 41 40
|
co |
|- ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) |
| 43 |
35 42
|
wceq |
|- ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) |
| 44 |
43 27 28
|
wral |
|- A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) |
| 45 |
44 26 25
|
crio |
|- ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) |
| 46 |
24 25 45
|
cmpt |
|- ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) |
| 47 |
23 46
|
wcel |
|- a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) |
| 48 |
47 22 21
|
wsbc |
|- [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) |
| 49 |
48 18 17
|
wsbc |
|- [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) |
| 50 |
49 12 11
|
wsbc |
|- [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) |
| 51 |
50 7
|
cab |
|- { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) } |
| 52 |
3 6 51
|
cmpt |
|- ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) } ) |
| 53 |
1 2 52
|
cmpt |
|- ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) } ) ) |
| 54 |
0 53
|
wceq |
|- HGMap = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` k ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` k ) ` w ) ) ( m ` v ) ) ) ) } ) ) |