Metamath Proof Explorer


Definition df-hgmap

Description: Define map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015)

Ref Expression
Assertion df-hgmap HGMap = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎[ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chg HGMap
1 vk 𝑘
2 cvv V
3 vw 𝑤
4 clh LHyp
5 1 cv 𝑘
6 5 4 cfv ( LHyp ‘ 𝑘 )
7 va 𝑎
8 cdvh DVecH
9 5 8 cfv ( DVecH ‘ 𝑘 )
10 3 cv 𝑤
11 10 9 cfv ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )
12 vu 𝑢
13 cbs Base
14 csca Scalar
15 12 cv 𝑢
16 15 14 cfv ( Scalar ‘ 𝑢 )
17 16 13 cfv ( Base ‘ ( Scalar ‘ 𝑢 ) )
18 vb 𝑏
19 chdma HDMap
20 5 19 cfv ( HDMap ‘ 𝑘 )
21 10 20 cfv ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )
22 vm 𝑚
23 7 cv 𝑎
24 vx 𝑥
25 18 cv 𝑏
26 vy 𝑦
27 vv 𝑣
28 15 13 cfv ( Base ‘ 𝑢 )
29 22 cv 𝑚
30 24 cv 𝑥
31 cvsca ·𝑠
32 15 31 cfv ( ·𝑠𝑢 )
33 27 cv 𝑣
34 30 33 32 co ( 𝑥 ( ·𝑠𝑢 ) 𝑣 )
35 34 29 cfv ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) )
36 26 cv 𝑦
37 clcd LCDual
38 5 37 cfv ( LCDual ‘ 𝑘 )
39 10 38 cfv ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 )
40 39 31 cfv ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) )
41 33 29 cfv ( 𝑚𝑣 )
42 36 41 40 co ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) )
43 35 42 wceq ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) )
44 43 27 28 wral 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) )
45 44 26 25 crio ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) )
46 24 25 45 cmpt ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) )
47 23 46 wcel 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) )
48 47 22 21 wsbc [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) )
49 48 18 17 wsbc [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) )
50 49 12 11 wsbc [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) )
51 50 7 cab { 𝑎[ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) }
52 3 6 51 cmpt ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎[ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) } )
53 1 2 52 cmpt ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎[ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) } ) )
54 0 53 wceq HGMap = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎[ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) } ) )