| Step | Hyp | Ref | Expression | 
						
							| 0 |  | chg | ⊢ HGMap | 
						
							| 1 |  | vk | ⊢ 𝑘 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vw | ⊢ 𝑤 | 
						
							| 4 |  | clh | ⊢ LHyp | 
						
							| 5 | 1 | cv | ⊢ 𝑘 | 
						
							| 6 | 5 4 | cfv | ⊢ ( LHyp ‘ 𝑘 ) | 
						
							| 7 |  | va | ⊢ 𝑎 | 
						
							| 8 |  | cdvh | ⊢ DVecH | 
						
							| 9 | 5 8 | cfv | ⊢ ( DVecH ‘ 𝑘 ) | 
						
							| 10 | 3 | cv | ⊢ 𝑤 | 
						
							| 11 | 10 9 | cfv | ⊢ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) | 
						
							| 12 |  | vu | ⊢ 𝑢 | 
						
							| 13 |  | cbs | ⊢ Base | 
						
							| 14 |  | csca | ⊢ Scalar | 
						
							| 15 | 12 | cv | ⊢ 𝑢 | 
						
							| 16 | 15 14 | cfv | ⊢ ( Scalar ‘ 𝑢 ) | 
						
							| 17 | 16 13 | cfv | ⊢ ( Base ‘ ( Scalar ‘ 𝑢 ) ) | 
						
							| 18 |  | vb | ⊢ 𝑏 | 
						
							| 19 |  | chdma | ⊢ HDMap | 
						
							| 20 | 5 19 | cfv | ⊢ ( HDMap ‘ 𝑘 ) | 
						
							| 21 | 10 20 | cfv | ⊢ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) | 
						
							| 22 |  | vm | ⊢ 𝑚 | 
						
							| 23 | 7 | cv | ⊢ 𝑎 | 
						
							| 24 |  | vx | ⊢ 𝑥 | 
						
							| 25 | 18 | cv | ⊢ 𝑏 | 
						
							| 26 |  | vy | ⊢ 𝑦 | 
						
							| 27 |  | vv | ⊢ 𝑣 | 
						
							| 28 | 15 13 | cfv | ⊢ ( Base ‘ 𝑢 ) | 
						
							| 29 | 22 | cv | ⊢ 𝑚 | 
						
							| 30 | 24 | cv | ⊢ 𝑥 | 
						
							| 31 |  | cvsca | ⊢  ·𝑠 | 
						
							| 32 | 15 31 | cfv | ⊢ (  ·𝑠  ‘ 𝑢 ) | 
						
							| 33 | 27 | cv | ⊢ 𝑣 | 
						
							| 34 | 30 33 32 | co | ⊢ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) | 
						
							| 35 | 34 29 | cfv | ⊢ ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) ) | 
						
							| 36 | 26 | cv | ⊢ 𝑦 | 
						
							| 37 |  | clcd | ⊢ LCDual | 
						
							| 38 | 5 37 | cfv | ⊢ ( LCDual ‘ 𝑘 ) | 
						
							| 39 | 10 38 | cfv | ⊢ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) | 
						
							| 40 | 39 31 | cfv | ⊢ (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) | 
						
							| 41 | 33 29 | cfv | ⊢ ( 𝑚 ‘ 𝑣 ) | 
						
							| 42 | 36 41 40 | co | ⊢ ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) | 
						
							| 43 | 35 42 | wceq | ⊢ ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) | 
						
							| 44 | 43 27 28 | wral | ⊢ ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) | 
						
							| 45 | 44 26 25 | crio | ⊢ ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) | 
						
							| 46 | 24 25 45 | cmpt | ⊢ ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) | 
						
							| 47 | 23 46 | wcel | ⊢ 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) | 
						
							| 48 | 47 22 21 | wsbc | ⊢ [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) | 
						
							| 49 | 48 18 17 | wsbc | ⊢ [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) | 
						
							| 50 | 49 12 11 | wsbc | ⊢ [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) | 
						
							| 51 | 50 7 | cab | ⊢ { 𝑎  ∣  [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } | 
						
							| 52 | 3 6 51 | cmpt | ⊢ ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  { 𝑎  ∣  [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) | 
						
							| 53 | 1 2 52 | cmpt | ⊢ ( 𝑘  ∈  V  ↦  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  { 𝑎  ∣  [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ) | 
						
							| 54 | 0 53 | wceq | ⊢ HGMap  =  ( 𝑘  ∈  V  ↦  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  { 𝑎  ∣  [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ) |