| Step |
Hyp |
Ref |
Expression |
| 0 |
|
chg |
⊢ HGMap |
| 1 |
|
vk |
⊢ 𝑘 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vw |
⊢ 𝑤 |
| 4 |
|
clh |
⊢ LHyp |
| 5 |
1
|
cv |
⊢ 𝑘 |
| 6 |
5 4
|
cfv |
⊢ ( LHyp ‘ 𝑘 ) |
| 7 |
|
va |
⊢ 𝑎 |
| 8 |
|
cdvh |
⊢ DVecH |
| 9 |
5 8
|
cfv |
⊢ ( DVecH ‘ 𝑘 ) |
| 10 |
3
|
cv |
⊢ 𝑤 |
| 11 |
10 9
|
cfv |
⊢ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) |
| 12 |
|
vu |
⊢ 𝑢 |
| 13 |
|
cbs |
⊢ Base |
| 14 |
|
csca |
⊢ Scalar |
| 15 |
12
|
cv |
⊢ 𝑢 |
| 16 |
15 14
|
cfv |
⊢ ( Scalar ‘ 𝑢 ) |
| 17 |
16 13
|
cfv |
⊢ ( Base ‘ ( Scalar ‘ 𝑢 ) ) |
| 18 |
|
vb |
⊢ 𝑏 |
| 19 |
|
chdma |
⊢ HDMap |
| 20 |
5 19
|
cfv |
⊢ ( HDMap ‘ 𝑘 ) |
| 21 |
10 20
|
cfv |
⊢ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) |
| 22 |
|
vm |
⊢ 𝑚 |
| 23 |
7
|
cv |
⊢ 𝑎 |
| 24 |
|
vx |
⊢ 𝑥 |
| 25 |
18
|
cv |
⊢ 𝑏 |
| 26 |
|
vy |
⊢ 𝑦 |
| 27 |
|
vv |
⊢ 𝑣 |
| 28 |
15 13
|
cfv |
⊢ ( Base ‘ 𝑢 ) |
| 29 |
22
|
cv |
⊢ 𝑚 |
| 30 |
24
|
cv |
⊢ 𝑥 |
| 31 |
|
cvsca |
⊢ ·𝑠 |
| 32 |
15 31
|
cfv |
⊢ ( ·𝑠 ‘ 𝑢 ) |
| 33 |
27
|
cv |
⊢ 𝑣 |
| 34 |
30 33 32
|
co |
⊢ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) |
| 35 |
34 29
|
cfv |
⊢ ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) |
| 36 |
26
|
cv |
⊢ 𝑦 |
| 37 |
|
clcd |
⊢ LCDual |
| 38 |
5 37
|
cfv |
⊢ ( LCDual ‘ 𝑘 ) |
| 39 |
10 38
|
cfv |
⊢ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) |
| 40 |
39 31
|
cfv |
⊢ ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) |
| 41 |
33 29
|
cfv |
⊢ ( 𝑚 ‘ 𝑣 ) |
| 42 |
36 41 40
|
co |
⊢ ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) |
| 43 |
35 42
|
wceq |
⊢ ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) |
| 44 |
43 27 28
|
wral |
⊢ ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) |
| 45 |
44 26 25
|
crio |
⊢ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) |
| 46 |
24 25 45
|
cmpt |
⊢ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) |
| 47 |
23 46
|
wcel |
⊢ 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) |
| 48 |
47 22 21
|
wsbc |
⊢ [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) |
| 49 |
48 18 17
|
wsbc |
⊢ [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) |
| 50 |
49 12 11
|
wsbc |
⊢ [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) |
| 51 |
50 7
|
cab |
⊢ { 𝑎 ∣ [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } |
| 52 |
3 6 51
|
cmpt |
⊢ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎 ∣ [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) |
| 53 |
1 2 52
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎 ∣ [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ) |
| 54 |
0 53
|
wceq |
⊢ HGMap = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎 ∣ [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ) |