Step |
Hyp |
Ref |
Expression |
1 |
|
hgmapval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
elex |
⊢ ( 𝐾 ∈ 𝑋 → 𝐾 ∈ V ) |
3 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = ( LHyp ‘ 𝐾 ) ) |
4 |
3 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = 𝐻 ) |
5 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( DVecH ‘ 𝑘 ) = ( DVecH ‘ 𝐾 ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( HDMap ‘ 𝑘 ) = ( HDMap ‘ 𝐾 ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LCDual ‘ 𝑘 ) = ( LCDual ‘ 𝐾 ) ) |
10 |
9
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝑘 = 𝐾 → ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) = ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ) |
12 |
11
|
oveqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ↔ ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) |
14 |
13
|
ralbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ↔ ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) |
15 |
14
|
riotabidv |
⊢ ( 𝑘 = 𝐾 → ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) = ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) |
16 |
15
|
mpteq2dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) = ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) |
17 |
16
|
eleq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ↔ 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) ) |
18 |
8 17
|
sbceqbid |
⊢ ( 𝑘 = 𝐾 → ( [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ↔ [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) ) |
19 |
18
|
sbcbidv |
⊢ ( 𝑘 = 𝐾 → ( [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ↔ [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) ) |
20 |
6 19
|
sbceqbid |
⊢ ( 𝑘 = 𝐾 → ( [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ↔ [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) ) |
21 |
20
|
abbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑎 ∣ [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } = { 𝑎 ∣ [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) |
22 |
4 21
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎 ∣ [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) = ( 𝑤 ∈ 𝐻 ↦ { 𝑎 ∣ [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ) |
23 |
|
df-hgmap |
⊢ HGMap = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎 ∣ [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ) |
24 |
22 23 1
|
mptfvmpt |
⊢ ( 𝐾 ∈ V → ( HGMap ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ { 𝑎 ∣ [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ) |
25 |
2 24
|
syl |
⊢ ( 𝐾 ∈ 𝑋 → ( HGMap ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ { 𝑎 ∣ [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ) |