Metamath Proof Explorer


Theorem hgmapffval

Description: Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015)

Ref Expression
Hypothesis hgmapval.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion hgmapffval ( 𝐾𝑋 → ( HGMap ‘ 𝐾 ) = ( 𝑤𝐻 ↦ { 𝑎[ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) } ) )

Proof

Step Hyp Ref Expression
1 hgmapval.h 𝐻 = ( LHyp ‘ 𝐾 )
2 elex ( 𝐾𝑋𝐾 ∈ V )
3 fveq2 ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = ( LHyp ‘ 𝐾 ) )
4 3 1 eqtr4di ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = 𝐻 )
5 fveq2 ( 𝑘 = 𝐾 → ( DVecH ‘ 𝑘 ) = ( DVecH ‘ 𝐾 ) )
6 5 fveq1d ( 𝑘 = 𝐾 → ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) )
7 fveq2 ( 𝑘 = 𝐾 → ( HDMap ‘ 𝑘 ) = ( HDMap ‘ 𝐾 ) )
8 7 fveq1d ( 𝑘 = 𝐾 → ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) )
9 fveq2 ( 𝑘 = 𝐾 → ( LCDual ‘ 𝑘 ) = ( LCDual ‘ 𝐾 ) )
10 9 fveq1d ( 𝑘 = 𝐾 → ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) )
11 10 fveq2d ( 𝑘 = 𝐾 → ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) = ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) )
12 11 oveqd ( 𝑘 = 𝐾 → ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) )
13 12 eqeq2d ( 𝑘 = 𝐾 → ( ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ↔ ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) )
14 13 ralbidv ( 𝑘 = 𝐾 → ( ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ↔ ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) )
15 14 riotabidv ( 𝑘 = 𝐾 → ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) = ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) )
16 15 mpteq2dv ( 𝑘 = 𝐾 → ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) = ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) )
17 16 eleq2d ( 𝑘 = 𝐾 → ( 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) ↔ 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) ) )
18 8 17 sbceqbid ( 𝑘 = 𝐾 → ( [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) ↔ [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) ) )
19 18 sbcbidv ( 𝑘 = 𝐾 → ( [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) ↔ [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) ) )
20 6 19 sbceqbid ( 𝑘 = 𝐾 → ( [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) ↔ [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) ) )
21 20 abbidv ( 𝑘 = 𝐾 → { 𝑎[ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) } = { 𝑎[ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) } )
22 4 21 mpteq12dv ( 𝑘 = 𝐾 → ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎[ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) } ) = ( 𝑤𝐻 ↦ { 𝑎[ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) } ) )
23 df-hgmap HGMap = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎[ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) } ) )
24 22 23 1 mptfvmpt ( 𝐾 ∈ V → ( HGMap ‘ 𝐾 ) = ( 𝑤𝐻 ↦ { 𝑎[ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) } ) )
25 2 24 syl ( 𝐾𝑋 → ( HGMap ‘ 𝐾 ) = ( 𝑤𝐻 ↦ { 𝑎[ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥𝑏 ↦ ( 𝑦𝑏𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚𝑣 ) ) ) ) } ) )