| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmapval.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | elex | ⊢ ( 𝐾  ∈  𝑋  →  𝐾  ∈  V ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( LHyp ‘ 𝑘 )  =  ( LHyp ‘ 𝐾 ) ) | 
						
							| 4 | 3 1 | eqtr4di | ⊢ ( 𝑘  =  𝐾  →  ( LHyp ‘ 𝑘 )  =  𝐻 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( DVecH ‘ 𝑘 )  =  ( DVecH ‘ 𝐾 ) ) | 
						
							| 6 | 5 | fveq1d | ⊢ ( 𝑘  =  𝐾  →  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( HDMap ‘ 𝑘 )  =  ( HDMap ‘ 𝐾 ) ) | 
						
							| 8 | 7 | fveq1d | ⊢ ( 𝑘  =  𝐾  →  ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( LCDual ‘ 𝑘 )  =  ( LCDual ‘ 𝐾 ) ) | 
						
							| 10 | 9 | fveq1d | ⊢ ( 𝑘  =  𝐾  →  ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑘  =  𝐾  →  (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) )  =  (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ) | 
						
							| 12 | 11 | oveqd | ⊢ ( 𝑘  =  𝐾  →  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) | 
						
							| 13 | 12 | eqeq2d | ⊢ ( 𝑘  =  𝐾  →  ( ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) )  ↔  ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) | 
						
							| 14 | 13 | ralbidv | ⊢ ( 𝑘  =  𝐾  →  ( ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) )  ↔  ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) | 
						
							| 15 | 14 | riotabidv | ⊢ ( 𝑘  =  𝐾  →  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) )  =  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) | 
						
							| 16 | 15 | mpteq2dv | ⊢ ( 𝑘  =  𝐾  →  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) )  =  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) | 
						
							| 17 | 16 | eleq2d | ⊢ ( 𝑘  =  𝐾  →  ( 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) )  ↔  𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) ) | 
						
							| 18 | 8 17 | sbceqbid | ⊢ ( 𝑘  =  𝐾  →  ( [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) )  ↔  [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) ) | 
						
							| 19 | 18 | sbcbidv | ⊢ ( 𝑘  =  𝐾  →  ( [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) )  ↔  [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) ) | 
						
							| 20 | 6 19 | sbceqbid | ⊢ ( 𝑘  =  𝐾  →  ( [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) )  ↔  [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) ) | 
						
							| 21 | 20 | abbidv | ⊢ ( 𝑘  =  𝐾  →  { 𝑎  ∣  [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) }  =  { 𝑎  ∣  [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) | 
						
							| 22 | 4 21 | mpteq12dv | ⊢ ( 𝑘  =  𝐾  →  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  { 𝑎  ∣  [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } )  =  ( 𝑤  ∈  𝐻  ↦  { 𝑎  ∣  [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ) | 
						
							| 23 |  | df-hgmap | ⊢ HGMap  =  ( 𝑘  ∈  V  ↦  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  { 𝑎  ∣  [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ) | 
						
							| 24 | 22 23 1 | mptfvmpt | ⊢ ( 𝐾  ∈  V  →  ( HGMap ‘ 𝐾 )  =  ( 𝑤  ∈  𝐻  ↦  { 𝑎  ∣  [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ) | 
						
							| 25 | 2 24 | syl | ⊢ ( 𝐾  ∈  𝑋  →  ( HGMap ‘ 𝐾 )  =  ( 𝑤  ∈  𝐻  ↦  { 𝑎  ∣  [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ) |