Metamath Proof Explorer


Theorem hgmapffval

Description: Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015)

Ref Expression
Hypothesis hgmapval.h H = LHyp K
Assertion hgmapffval K X HGMap K = w H a | [˙ DVecH K w / u]˙ [˙Base Scalar u / b]˙ [˙ HDMap K w / m]˙ a x b ι y b | v Base u m x u v = y LCDual K w m v

Proof

Step Hyp Ref Expression
1 hgmapval.h H = LHyp K
2 elex K X K V
3 fveq2 k = K LHyp k = LHyp K
4 3 1 eqtr4di k = K LHyp k = H
5 fveq2 k = K DVecH k = DVecH K
6 5 fveq1d k = K DVecH k w = DVecH K w
7 fveq2 k = K HDMap k = HDMap K
8 7 fveq1d k = K HDMap k w = HDMap K w
9 fveq2 k = K LCDual k = LCDual K
10 9 fveq1d k = K LCDual k w = LCDual K w
11 10 fveq2d k = K LCDual k w = LCDual K w
12 11 oveqd k = K y LCDual k w m v = y LCDual K w m v
13 12 eqeq2d k = K m x u v = y LCDual k w m v m x u v = y LCDual K w m v
14 13 ralbidv k = K v Base u m x u v = y LCDual k w m v v Base u m x u v = y LCDual K w m v
15 14 riotabidv k = K ι y b | v Base u m x u v = y LCDual k w m v = ι y b | v Base u m x u v = y LCDual K w m v
16 15 mpteq2dv k = K x b ι y b | v Base u m x u v = y LCDual k w m v = x b ι y b | v Base u m x u v = y LCDual K w m v
17 16 eleq2d k = K a x b ι y b | v Base u m x u v = y LCDual k w m v a x b ι y b | v Base u m x u v = y LCDual K w m v
18 8 17 sbceqbid k = K [˙ HDMap k w / m]˙ a x b ι y b | v Base u m x u v = y LCDual k w m v [˙ HDMap K w / m]˙ a x b ι y b | v Base u m x u v = y LCDual K w m v
19 18 sbcbidv k = K [˙Base Scalar u / b]˙ [˙ HDMap k w / m]˙ a x b ι y b | v Base u m x u v = y LCDual k w m v [˙Base Scalar u / b]˙ [˙ HDMap K w / m]˙ a x b ι y b | v Base u m x u v = y LCDual K w m v
20 6 19 sbceqbid k = K [˙ DVecH k w / u]˙ [˙Base Scalar u / b]˙ [˙ HDMap k w / m]˙ a x b ι y b | v Base u m x u v = y LCDual k w m v [˙ DVecH K w / u]˙ [˙Base Scalar u / b]˙ [˙ HDMap K w / m]˙ a x b ι y b | v Base u m x u v = y LCDual K w m v
21 20 abbidv k = K a | [˙ DVecH k w / u]˙ [˙Base Scalar u / b]˙ [˙ HDMap k w / m]˙ a x b ι y b | v Base u m x u v = y LCDual k w m v = a | [˙ DVecH K w / u]˙ [˙Base Scalar u / b]˙ [˙ HDMap K w / m]˙ a x b ι y b | v Base u m x u v = y LCDual K w m v
22 4 21 mpteq12dv k = K w LHyp k a | [˙ DVecH k w / u]˙ [˙Base Scalar u / b]˙ [˙ HDMap k w / m]˙ a x b ι y b | v Base u m x u v = y LCDual k w m v = w H a | [˙ DVecH K w / u]˙ [˙Base Scalar u / b]˙ [˙ HDMap K w / m]˙ a x b ι y b | v Base u m x u v = y LCDual K w m v
23 df-hgmap HGMap = k V w LHyp k a | [˙ DVecH k w / u]˙ [˙Base Scalar u / b]˙ [˙ HDMap k w / m]˙ a x b ι y b | v Base u m x u v = y LCDual k w m v
24 22 23 1 mptfvmpt K V HGMap K = w H a | [˙ DVecH K w / u]˙ [˙Base Scalar u / b]˙ [˙ HDMap K w / m]˙ a x b ι y b | v Base u m x u v = y LCDual K w m v
25 2 24 syl K X HGMap K = w H a | [˙ DVecH K w / u]˙ [˙Base Scalar u / b]˙ [˙ HDMap K w / m]˙ a x b ι y b | v Base u m x u v = y LCDual K w m v