Metamath Proof Explorer


Definition df-hdmap

Description: Define map from vectors to functionals in the closed kernel dual space. See hdmapfval description for more details. (Contributed by NM, 15-May-2015)

Ref Expression
Assertion df-hdmap HDMap=kVwLHypka|[˙IBasekILTrnkw/e]˙[˙DVecHkw/u]˙[˙Baseu/v]˙[˙HDMap1kw/i]˙atvιyBaseLCDualkw|zv¬zLSpanueLSpanuty=izieHVMapkwezt

Detailed syntax breakdown

Step Hyp Ref Expression
0 chdma classHDMap
1 vk setvark
2 cvv classV
3 vw setvarw
4 clh classLHyp
5 1 cv setvark
6 5 4 cfv classLHypk
7 va setvara
8 cid classI
9 cbs classBase
10 5 9 cfv classBasek
11 8 10 cres classIBasek
12 cltrn classLTrn
13 5 12 cfv classLTrnk
14 3 cv setvarw
15 14 13 cfv classLTrnkw
16 8 15 cres classILTrnkw
17 11 16 cop classIBasekILTrnkw
18 ve setvare
19 cdvh classDVecH
20 5 19 cfv classDVecHk
21 14 20 cfv classDVecHkw
22 vu setvaru
23 22 cv setvaru
24 23 9 cfv classBaseu
25 vv setvarv
26 chdma1 classHDMap1
27 5 26 cfv classHDMap1k
28 14 27 cfv classHDMap1kw
29 vi setvari
30 7 cv setvara
31 vt setvart
32 25 cv setvarv
33 vy setvary
34 clcd classLCDual
35 5 34 cfv classLCDualk
36 14 35 cfv classLCDualkw
37 36 9 cfv classBaseLCDualkw
38 vz setvarz
39 38 cv setvarz
40 clspn classLSpan
41 23 40 cfv classLSpanu
42 18 cv setvare
43 42 csn classe
44 43 41 cfv classLSpanue
45 31 cv setvart
46 45 csn classt
47 46 41 cfv classLSpanut
48 44 47 cun classLSpanueLSpanut
49 39 48 wcel wffzLSpanueLSpanut
50 49 wn wff¬zLSpanueLSpanut
51 33 cv setvary
52 29 cv setvari
53 chvm classHVMap
54 5 53 cfv classHVMapk
55 14 54 cfv classHVMapkw
56 42 55 cfv classHVMapkwe
57 42 56 39 cotp classeHVMapkwez
58 57 52 cfv classieHVMapkwez
59 39 58 45 cotp classzieHVMapkwezt
60 59 52 cfv classizieHVMapkwezt
61 51 60 wceq wffy=izieHVMapkwezt
62 50 61 wi wff¬zLSpanueLSpanuty=izieHVMapkwezt
63 62 38 32 wral wffzv¬zLSpanueLSpanuty=izieHVMapkwezt
64 63 33 37 crio classιyBaseLCDualkw|zv¬zLSpanueLSpanuty=izieHVMapkwezt
65 31 32 64 cmpt classtvιyBaseLCDualkw|zv¬zLSpanueLSpanuty=izieHVMapkwezt
66 30 65 wcel wffatvιyBaseLCDualkw|zv¬zLSpanueLSpanuty=izieHVMapkwezt
67 66 29 28 wsbc wff[˙HDMap1kw/i]˙atvιyBaseLCDualkw|zv¬zLSpanueLSpanuty=izieHVMapkwezt
68 67 25 24 wsbc wff[˙Baseu/v]˙[˙HDMap1kw/i]˙atvιyBaseLCDualkw|zv¬zLSpanueLSpanuty=izieHVMapkwezt
69 68 22 21 wsbc wff[˙DVecHkw/u]˙[˙Baseu/v]˙[˙HDMap1kw/i]˙atvιyBaseLCDualkw|zv¬zLSpanueLSpanuty=izieHVMapkwezt
70 69 18 17 wsbc wff[˙IBasekILTrnkw/e]˙[˙DVecHkw/u]˙[˙Baseu/v]˙[˙HDMap1kw/i]˙atvιyBaseLCDualkw|zv¬zLSpanueLSpanuty=izieHVMapkwezt
71 70 7 cab classa|[˙IBasekILTrnkw/e]˙[˙DVecHkw/u]˙[˙Baseu/v]˙[˙HDMap1kw/i]˙atvιyBaseLCDualkw|zv¬zLSpanueLSpanuty=izieHVMapkwezt
72 3 6 71 cmpt classwLHypka|[˙IBasekILTrnkw/e]˙[˙DVecHkw/u]˙[˙Baseu/v]˙[˙HDMap1kw/i]˙atvιyBaseLCDualkw|zv¬zLSpanueLSpanuty=izieHVMapkwezt
73 1 2 72 cmpt classkVwLHypka|[˙IBasekILTrnkw/e]˙[˙DVecHkw/u]˙[˙Baseu/v]˙[˙HDMap1kw/i]˙atvιyBaseLCDualkw|zv¬zLSpanueLSpanuty=izieHVMapkwezt
74 0 73 wceq wffHDMap=kVwLHypka|[˙IBasekILTrnkw/e]˙[˙DVecHkw/u]˙[˙Baseu/v]˙[˙HDMap1kw/i]˙atvιyBaseLCDualkw|zv¬zLSpanueLSpanuty=izieHVMapkwezt