Step |
Hyp |
Ref |
Expression |
0 |
|
chdma |
⊢ HDMap |
1 |
|
vk |
⊢ 𝑘 |
2 |
|
cvv |
⊢ V |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
clh |
⊢ LHyp |
5 |
1
|
cv |
⊢ 𝑘 |
6 |
5 4
|
cfv |
⊢ ( LHyp ‘ 𝑘 ) |
7 |
|
va |
⊢ 𝑎 |
8 |
|
cid |
⊢ I |
9 |
|
cbs |
⊢ Base |
10 |
5 9
|
cfv |
⊢ ( Base ‘ 𝑘 ) |
11 |
8 10
|
cres |
⊢ ( I ↾ ( Base ‘ 𝑘 ) ) |
12 |
|
cltrn |
⊢ LTrn |
13 |
5 12
|
cfv |
⊢ ( LTrn ‘ 𝑘 ) |
14 |
3
|
cv |
⊢ 𝑤 |
15 |
14 13
|
cfv |
⊢ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) |
16 |
8 15
|
cres |
⊢ ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) |
17 |
11 16
|
cop |
⊢ 〈 ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) 〉 |
18 |
|
ve |
⊢ 𝑒 |
19 |
|
cdvh |
⊢ DVecH |
20 |
5 19
|
cfv |
⊢ ( DVecH ‘ 𝑘 ) |
21 |
14 20
|
cfv |
⊢ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) |
22 |
|
vu |
⊢ 𝑢 |
23 |
22
|
cv |
⊢ 𝑢 |
24 |
23 9
|
cfv |
⊢ ( Base ‘ 𝑢 ) |
25 |
|
vv |
⊢ 𝑣 |
26 |
|
chdma1 |
⊢ HDMap1 |
27 |
5 26
|
cfv |
⊢ ( HDMap1 ‘ 𝑘 ) |
28 |
14 27
|
cfv |
⊢ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) |
29 |
|
vi |
⊢ 𝑖 |
30 |
7
|
cv |
⊢ 𝑎 |
31 |
|
vt |
⊢ 𝑡 |
32 |
25
|
cv |
⊢ 𝑣 |
33 |
|
vy |
⊢ 𝑦 |
34 |
|
clcd |
⊢ LCDual |
35 |
5 34
|
cfv |
⊢ ( LCDual ‘ 𝑘 ) |
36 |
14 35
|
cfv |
⊢ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) |
37 |
36 9
|
cfv |
⊢ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) |
38 |
|
vz |
⊢ 𝑧 |
39 |
38
|
cv |
⊢ 𝑧 |
40 |
|
clspn |
⊢ LSpan |
41 |
23 40
|
cfv |
⊢ ( LSpan ‘ 𝑢 ) |
42 |
18
|
cv |
⊢ 𝑒 |
43 |
42
|
csn |
⊢ { 𝑒 } |
44 |
43 41
|
cfv |
⊢ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) |
45 |
31
|
cv |
⊢ 𝑡 |
46 |
45
|
csn |
⊢ { 𝑡 } |
47 |
46 41
|
cfv |
⊢ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) |
48 |
44 47
|
cun |
⊢ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) |
49 |
39 48
|
wcel |
⊢ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) |
50 |
49
|
wn |
⊢ ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) |
51 |
33
|
cv |
⊢ 𝑦 |
52 |
29
|
cv |
⊢ 𝑖 |
53 |
|
chvm |
⊢ HVMap |
54 |
5 53
|
cfv |
⊢ ( HVMap ‘ 𝑘 ) |
55 |
14 54
|
cfv |
⊢ ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) |
56 |
42 55
|
cfv |
⊢ ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) |
57 |
42 56 39
|
cotp |
⊢ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 |
58 |
57 52
|
cfv |
⊢ ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) |
59 |
39 58 45
|
cotp |
⊢ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 |
60 |
59 52
|
cfv |
⊢ ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) |
61 |
51 60
|
wceq |
⊢ 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) |
62 |
50 61
|
wi |
⊢ ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) |
63 |
62 38 32
|
wral |
⊢ ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) |
64 |
63 33 37
|
crio |
⊢ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) |
65 |
31 32 64
|
cmpt |
⊢ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) |
66 |
30 65
|
wcel |
⊢ 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) |
67 |
66 29 28
|
wsbc |
⊢ [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) |
68 |
67 25 24
|
wsbc |
⊢ [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) |
69 |
68 22 21
|
wsbc |
⊢ [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) |
70 |
69 18 17
|
wsbc |
⊢ [ 〈 ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) 〉 / 𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) |
71 |
70 7
|
cab |
⊢ { 𝑎 ∣ [ 〈 ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) 〉 / 𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) } |
72 |
3 6 71
|
cmpt |
⊢ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎 ∣ [ 〈 ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) 〉 / 𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) } ) |
73 |
1 2 72
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎 ∣ [ 〈 ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) 〉 / 𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) } ) ) |
74 |
0 73
|
wceq |
⊢ HDMap = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎 ∣ [ 〈 ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) 〉 / 𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) } ) ) |