Metamath Proof Explorer


Definition df-hdmap

Description: Define map from vectors to functionals in the closed kernel dual space. See hdmapfval description for more details. (Contributed by NM, 15-May-2015)

Ref Expression
Assertion df-hdmap HDMap = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎[ ⟨ ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) ⟩ / 𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chdma HDMap
1 vk 𝑘
2 cvv V
3 vw 𝑤
4 clh LHyp
5 1 cv 𝑘
6 5 4 cfv ( LHyp ‘ 𝑘 )
7 va 𝑎
8 cid I
9 cbs Base
10 5 9 cfv ( Base ‘ 𝑘 )
11 8 10 cres ( I ↾ ( Base ‘ 𝑘 ) )
12 cltrn LTrn
13 5 12 cfv ( LTrn ‘ 𝑘 )
14 3 cv 𝑤
15 14 13 cfv ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )
16 8 15 cres ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) )
17 11 16 cop ⟨ ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) ⟩
18 ve 𝑒
19 cdvh DVecH
20 5 19 cfv ( DVecH ‘ 𝑘 )
21 14 20 cfv ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )
22 vu 𝑢
23 22 cv 𝑢
24 23 9 cfv ( Base ‘ 𝑢 )
25 vv 𝑣
26 chdma1 HDMap1
27 5 26 cfv ( HDMap1 ‘ 𝑘 )
28 14 27 cfv ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 )
29 vi 𝑖
30 7 cv 𝑎
31 vt 𝑡
32 25 cv 𝑣
33 vy 𝑦
34 clcd LCDual
35 5 34 cfv ( LCDual ‘ 𝑘 )
36 14 35 cfv ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 )
37 36 9 cfv ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) )
38 vz 𝑧
39 38 cv 𝑧
40 clspn LSpan
41 23 40 cfv ( LSpan ‘ 𝑢 )
42 18 cv 𝑒
43 42 csn { 𝑒 }
44 43 41 cfv ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } )
45 31 cv 𝑡
46 45 csn { 𝑡 }
47 46 41 cfv ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } )
48 44 47 cun ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) )
49 39 48 wcel 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) )
50 49 wn ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) )
51 33 cv 𝑦
52 29 cv 𝑖
53 chvm HVMap
54 5 53 cfv ( HVMap ‘ 𝑘 )
55 14 54 cfv ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 )
56 42 55 cfv ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 )
57 42 56 39 cotp 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧
58 57 52 cfv ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ )
59 39 58 45 cotp 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡
60 59 52 cfv ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ )
61 51 60 wceq 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ )
62 50 61 wi ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) )
63 62 38 32 wral 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) )
64 63 33 37 crio ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) )
65 31 32 64 cmpt ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) )
66 30 65 wcel 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) )
67 66 29 28 wsbc [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) )
68 67 25 24 wsbc [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) )
69 68 22 21 wsbc [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) )
70 69 18 17 wsbc [ ⟨ ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) ⟩ / 𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) )
71 70 7 cab { 𝑎[ ⟨ ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) ⟩ / 𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) }
72 3 6 71 cmpt ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎[ ⟨ ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) ⟩ / 𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) } )
73 1 2 72 cmpt ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎[ ⟨ ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) ⟩ / 𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) } ) )
74 0 73 wceq HDMap = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎[ ⟨ ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) ⟩ / 𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) } ) )