| Step | Hyp | Ref | Expression | 
						
							| 0 |  | chdma | ⊢ HDMap | 
						
							| 1 |  | vk | ⊢ 𝑘 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vw | ⊢ 𝑤 | 
						
							| 4 |  | clh | ⊢ LHyp | 
						
							| 5 | 1 | cv | ⊢ 𝑘 | 
						
							| 6 | 5 4 | cfv | ⊢ ( LHyp ‘ 𝑘 ) | 
						
							| 7 |  | va | ⊢ 𝑎 | 
						
							| 8 |  | cid | ⊢  I | 
						
							| 9 |  | cbs | ⊢ Base | 
						
							| 10 | 5 9 | cfv | ⊢ ( Base ‘ 𝑘 ) | 
						
							| 11 | 8 10 | cres | ⊢ (  I   ↾  ( Base ‘ 𝑘 ) ) | 
						
							| 12 |  | cltrn | ⊢ LTrn | 
						
							| 13 | 5 12 | cfv | ⊢ ( LTrn ‘ 𝑘 ) | 
						
							| 14 | 3 | cv | ⊢ 𝑤 | 
						
							| 15 | 14 13 | cfv | ⊢ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) | 
						
							| 16 | 8 15 | cres | ⊢ (  I   ↾  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) | 
						
							| 17 | 11 16 | cop | ⊢ 〈 (  I   ↾  ( Base ‘ 𝑘 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) 〉 | 
						
							| 18 |  | ve | ⊢ 𝑒 | 
						
							| 19 |  | cdvh | ⊢ DVecH | 
						
							| 20 | 5 19 | cfv | ⊢ ( DVecH ‘ 𝑘 ) | 
						
							| 21 | 14 20 | cfv | ⊢ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) | 
						
							| 22 |  | vu | ⊢ 𝑢 | 
						
							| 23 | 22 | cv | ⊢ 𝑢 | 
						
							| 24 | 23 9 | cfv | ⊢ ( Base ‘ 𝑢 ) | 
						
							| 25 |  | vv | ⊢ 𝑣 | 
						
							| 26 |  | chdma1 | ⊢ HDMap1 | 
						
							| 27 | 5 26 | cfv | ⊢ ( HDMap1 ‘ 𝑘 ) | 
						
							| 28 | 14 27 | cfv | ⊢ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) | 
						
							| 29 |  | vi | ⊢ 𝑖 | 
						
							| 30 | 7 | cv | ⊢ 𝑎 | 
						
							| 31 |  | vt | ⊢ 𝑡 | 
						
							| 32 | 25 | cv | ⊢ 𝑣 | 
						
							| 33 |  | vy | ⊢ 𝑦 | 
						
							| 34 |  | clcd | ⊢ LCDual | 
						
							| 35 | 5 34 | cfv | ⊢ ( LCDual ‘ 𝑘 ) | 
						
							| 36 | 14 35 | cfv | ⊢ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) | 
						
							| 37 | 36 9 | cfv | ⊢ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) | 
						
							| 38 |  | vz | ⊢ 𝑧 | 
						
							| 39 | 38 | cv | ⊢ 𝑧 | 
						
							| 40 |  | clspn | ⊢ LSpan | 
						
							| 41 | 23 40 | cfv | ⊢ ( LSpan ‘ 𝑢 ) | 
						
							| 42 | 18 | cv | ⊢ 𝑒 | 
						
							| 43 | 42 | csn | ⊢ { 𝑒 } | 
						
							| 44 | 43 41 | cfv | ⊢ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) | 
						
							| 45 | 31 | cv | ⊢ 𝑡 | 
						
							| 46 | 45 | csn | ⊢ { 𝑡 } | 
						
							| 47 | 46 41 | cfv | ⊢ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) | 
						
							| 48 | 44 47 | cun | ⊢ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } )  ∪  ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) | 
						
							| 49 | 39 48 | wcel | ⊢ 𝑧  ∈  ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } )  ∪  ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) | 
						
							| 50 | 49 | wn | ⊢ ¬  𝑧  ∈  ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } )  ∪  ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) | 
						
							| 51 | 33 | cv | ⊢ 𝑦 | 
						
							| 52 | 29 | cv | ⊢ 𝑖 | 
						
							| 53 |  | chvm | ⊢ HVMap | 
						
							| 54 | 5 53 | cfv | ⊢ ( HVMap ‘ 𝑘 ) | 
						
							| 55 | 14 54 | cfv | ⊢ ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) | 
						
							| 56 | 42 55 | cfv | ⊢ ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) | 
						
							| 57 | 42 56 39 | cotp | ⊢ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 | 
						
							| 58 | 57 52 | cfv | ⊢ ( 𝑖 ‘ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 ) | 
						
							| 59 | 39 58 45 | cotp | ⊢ 〈 𝑧 ,  ( 𝑖 ‘ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 ) ,  𝑡 〉 | 
						
							| 60 | 59 52 | cfv | ⊢ ( 𝑖 ‘ 〈 𝑧 ,  ( 𝑖 ‘ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 ) ,  𝑡 〉 ) | 
						
							| 61 | 51 60 | wceq | ⊢ 𝑦  =  ( 𝑖 ‘ 〈 𝑧 ,  ( 𝑖 ‘ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 ) ,  𝑡 〉 ) | 
						
							| 62 | 50 61 | wi | ⊢ ( ¬  𝑧  ∈  ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } )  ∪  ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) )  →  𝑦  =  ( 𝑖 ‘ 〈 𝑧 ,  ( 𝑖 ‘ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 ) ,  𝑡 〉 ) ) | 
						
							| 63 | 62 38 32 | wral | ⊢ ∀ 𝑧  ∈  𝑣 ( ¬  𝑧  ∈  ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } )  ∪  ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) )  →  𝑦  =  ( 𝑖 ‘ 〈 𝑧 ,  ( 𝑖 ‘ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 ) ,  𝑡 〉 ) ) | 
						
							| 64 | 63 33 37 | crio | ⊢ ( ℩ 𝑦  ∈  ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧  ∈  𝑣 ( ¬  𝑧  ∈  ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } )  ∪  ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) )  →  𝑦  =  ( 𝑖 ‘ 〈 𝑧 ,  ( 𝑖 ‘ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 ) ,  𝑡 〉 ) ) ) | 
						
							| 65 | 31 32 64 | cmpt | ⊢ ( 𝑡  ∈  𝑣  ↦  ( ℩ 𝑦  ∈  ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧  ∈  𝑣 ( ¬  𝑧  ∈  ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } )  ∪  ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) )  →  𝑦  =  ( 𝑖 ‘ 〈 𝑧 ,  ( 𝑖 ‘ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 ) ,  𝑡 〉 ) ) ) ) | 
						
							| 66 | 30 65 | wcel | ⊢ 𝑎  ∈  ( 𝑡  ∈  𝑣  ↦  ( ℩ 𝑦  ∈  ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧  ∈  𝑣 ( ¬  𝑧  ∈  ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } )  ∪  ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) )  →  𝑦  =  ( 𝑖 ‘ 〈 𝑧 ,  ( 𝑖 ‘ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 ) ,  𝑡 〉 ) ) ) ) | 
						
							| 67 | 66 29 28 | wsbc | ⊢ [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 )  /  𝑖 ] 𝑎  ∈  ( 𝑡  ∈  𝑣  ↦  ( ℩ 𝑦  ∈  ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧  ∈  𝑣 ( ¬  𝑧  ∈  ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } )  ∪  ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) )  →  𝑦  =  ( 𝑖 ‘ 〈 𝑧 ,  ( 𝑖 ‘ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 ) ,  𝑡 〉 ) ) ) ) | 
						
							| 68 | 67 25 24 | wsbc | ⊢ [ ( Base ‘ 𝑢 )  /  𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 )  /  𝑖 ] 𝑎  ∈  ( 𝑡  ∈  𝑣  ↦  ( ℩ 𝑦  ∈  ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧  ∈  𝑣 ( ¬  𝑧  ∈  ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } )  ∪  ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) )  →  𝑦  =  ( 𝑖 ‘ 〈 𝑧 ,  ( 𝑖 ‘ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 ) ,  𝑡 〉 ) ) ) ) | 
						
							| 69 | 68 22 21 | wsbc | ⊢ [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ 𝑢 )  /  𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 )  /  𝑖 ] 𝑎  ∈  ( 𝑡  ∈  𝑣  ↦  ( ℩ 𝑦  ∈  ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧  ∈  𝑣 ( ¬  𝑧  ∈  ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } )  ∪  ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) )  →  𝑦  =  ( 𝑖 ‘ 〈 𝑧 ,  ( 𝑖 ‘ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 ) ,  𝑡 〉 ) ) ) ) | 
						
							| 70 | 69 18 17 | wsbc | ⊢ [ 〈 (  I   ↾  ( Base ‘ 𝑘 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) 〉  /  𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ 𝑢 )  /  𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 )  /  𝑖 ] 𝑎  ∈  ( 𝑡  ∈  𝑣  ↦  ( ℩ 𝑦  ∈  ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧  ∈  𝑣 ( ¬  𝑧  ∈  ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } )  ∪  ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) )  →  𝑦  =  ( 𝑖 ‘ 〈 𝑧 ,  ( 𝑖 ‘ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 ) ,  𝑡 〉 ) ) ) ) | 
						
							| 71 | 70 7 | cab | ⊢ { 𝑎  ∣  [ 〈 (  I   ↾  ( Base ‘ 𝑘 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) 〉  /  𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ 𝑢 )  /  𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 )  /  𝑖 ] 𝑎  ∈  ( 𝑡  ∈  𝑣  ↦  ( ℩ 𝑦  ∈  ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧  ∈  𝑣 ( ¬  𝑧  ∈  ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } )  ∪  ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) )  →  𝑦  =  ( 𝑖 ‘ 〈 𝑧 ,  ( 𝑖 ‘ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 ) ,  𝑡 〉 ) ) ) ) } | 
						
							| 72 | 3 6 71 | cmpt | ⊢ ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  { 𝑎  ∣  [ 〈 (  I   ↾  ( Base ‘ 𝑘 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) 〉  /  𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ 𝑢 )  /  𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 )  /  𝑖 ] 𝑎  ∈  ( 𝑡  ∈  𝑣  ↦  ( ℩ 𝑦  ∈  ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧  ∈  𝑣 ( ¬  𝑧  ∈  ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } )  ∪  ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) )  →  𝑦  =  ( 𝑖 ‘ 〈 𝑧 ,  ( 𝑖 ‘ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 ) ,  𝑡 〉 ) ) ) ) } ) | 
						
							| 73 | 1 2 72 | cmpt | ⊢ ( 𝑘  ∈  V  ↦  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  { 𝑎  ∣  [ 〈 (  I   ↾  ( Base ‘ 𝑘 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) 〉  /  𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ 𝑢 )  /  𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 )  /  𝑖 ] 𝑎  ∈  ( 𝑡  ∈  𝑣  ↦  ( ℩ 𝑦  ∈  ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧  ∈  𝑣 ( ¬  𝑧  ∈  ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } )  ∪  ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) )  →  𝑦  =  ( 𝑖 ‘ 〈 𝑧 ,  ( 𝑖 ‘ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 ) ,  𝑡 〉 ) ) ) ) } ) ) | 
						
							| 74 | 0 73 | wceq | ⊢ HDMap  =  ( 𝑘  ∈  V  ↦  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  { 𝑎  ∣  [ 〈 (  I   ↾  ( Base ‘ 𝑘 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) 〉  /  𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ 𝑢 )  /  𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 )  /  𝑖 ] 𝑎  ∈  ( 𝑡  ∈  𝑣  ↦  ( ℩ 𝑦  ∈  ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧  ∈  𝑣 ( ¬  𝑧  ∈  ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } )  ∪  ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) )  →  𝑦  =  ( 𝑖 ‘ 〈 𝑧 ,  ( 𝑖 ‘ 〈 𝑒 ,  ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) ,  𝑧 〉 ) ,  𝑡 〉 ) ) ) ) } ) ) |