Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapfval.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
3 |
|
hdmapfval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hdmapfval.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
hdmapfval.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
6 |
|
hdmapfval.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
hdmapfval.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
8 |
|
hdmapfval.j |
⊢ 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmapfval.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
hdmapfval.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hdmapfval.k |
⊢ ( 𝜑 → ( 𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
1
|
hdmapffval |
⊢ ( 𝐾 ∈ 𝐴 → ( HDMap ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ { 𝑎 ∣ [ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 / 𝑒 ] [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) } ) ) |
13 |
12
|
fveq1d |
⊢ ( 𝐾 ∈ 𝐴 → ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( 𝑤 ∈ 𝐻 ↦ { 𝑎 ∣ [ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 / 𝑒 ] [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) } ) ‘ 𝑊 ) ) |
14 |
10 13
|
syl5eq |
⊢ ( 𝐾 ∈ 𝐴 → 𝑆 = ( ( 𝑤 ∈ 𝐻 ↦ { 𝑎 ∣ [ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 / 𝑒 ] [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) } ) ‘ 𝑊 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
16 |
15
|
reseq2d |
⊢ ( 𝑤 = 𝑊 → ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) = ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
17 |
16
|
opeq2d |
⊢ ( 𝑤 = 𝑊 → 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ) |
18 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ) |
20 |
|
2fveq3 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ) |
22 |
21
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) = ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) ) |
23 |
22
|
oteq2d |
⊢ ( 𝑤 = 𝑊 → 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 = 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) |
24 |
23
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) = ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) ) |
25 |
24
|
oteq2d |
⊢ ( 𝑤 = 𝑊 → 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 = 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) |
26 |
25
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) |
27 |
26
|
eqeq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ↔ 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) |
28 |
27
|
imbi2d |
⊢ ( 𝑤 = 𝑊 → ( ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ↔ ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) |
29 |
28
|
ralbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ↔ ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) |
30 |
20 29
|
riotaeqbidv |
⊢ ( 𝑤 = 𝑊 → ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) = ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) |
31 |
30
|
mpteq2dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) = ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) |
32 |
31
|
eleq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ↔ 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) ) |
33 |
19 32
|
sbceqbid |
⊢ ( 𝑤 = 𝑊 → ( [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ↔ [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) ) |
34 |
33
|
sbcbidv |
⊢ ( 𝑤 = 𝑊 → ( [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ↔ [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) ) |
35 |
18 34
|
sbceqbid |
⊢ ( 𝑤 = 𝑊 → ( [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ↔ [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) ) |
36 |
17 35
|
sbceqbid |
⊢ ( 𝑤 = 𝑊 → ( [ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 / 𝑒 ] [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ↔ [ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 / 𝑒 ] [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) ) |
37 |
|
opex |
⊢ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ∈ V |
38 |
|
fvex |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ∈ V |
39 |
|
fvex |
⊢ ( Base ‘ 𝑢 ) ∈ V |
40 |
|
simp1 |
⊢ ( ( 𝑒 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ∧ 𝑢 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → 𝑒 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ) |
41 |
40 2
|
eqtr4di |
⊢ ( ( 𝑒 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ∧ 𝑢 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → 𝑒 = 𝐸 ) |
42 |
|
simp2 |
⊢ ( ( 𝑒 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ∧ 𝑢 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → 𝑢 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
43 |
42 3
|
eqtr4di |
⊢ ( ( 𝑒 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ∧ 𝑢 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → 𝑢 = 𝑈 ) |
44 |
|
simp3 |
⊢ ( ( 𝑒 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ∧ 𝑢 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → 𝑣 = ( Base ‘ 𝑢 ) ) |
45 |
43
|
fveq2d |
⊢ ( ( 𝑒 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ∧ 𝑢 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → ( Base ‘ 𝑢 ) = ( Base ‘ 𝑈 ) ) |
46 |
44 45
|
eqtrd |
⊢ ( ( 𝑒 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ∧ 𝑢 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → 𝑣 = ( Base ‘ 𝑈 ) ) |
47 |
46 4
|
eqtr4di |
⊢ ( ( 𝑒 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ∧ 𝑢 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → 𝑣 = 𝑉 ) |
48 |
|
fvex |
⊢ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ∈ V |
49 |
|
id |
⊢ ( 𝑖 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) → 𝑖 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ) |
50 |
49 9
|
eqtr4di |
⊢ ( 𝑖 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) → 𝑖 = 𝐼 ) |
51 |
|
fveq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) = ( 𝐼 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) |
52 |
|
fveq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) = ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) ) |
53 |
52
|
oteq2d |
⊢ ( 𝑖 = 𝐼 → 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 = 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) |
54 |
53
|
fveq2d |
⊢ ( 𝑖 = 𝐼 → ( 𝐼 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) |
55 |
51 54
|
eqtrd |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) |
56 |
55
|
eqeq2d |
⊢ ( 𝑖 = 𝐼 → ( 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ↔ 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) |
57 |
56
|
imbi2d |
⊢ ( 𝑖 = 𝐼 → ( ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ↔ ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) |
58 |
57
|
ralbidv |
⊢ ( 𝑖 = 𝐼 → ( ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ↔ ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) |
59 |
58
|
riotabidv |
⊢ ( 𝑖 = 𝐼 → ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) = ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) |
60 |
59
|
mpteq2dv |
⊢ ( 𝑖 = 𝐼 → ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) = ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) |
61 |
60
|
eleq2d |
⊢ ( 𝑖 = 𝐼 → ( 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ↔ 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) ) |
62 |
50 61
|
syl |
⊢ ( 𝑖 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) → ( 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ↔ 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) ) |
63 |
48 62
|
sbcie |
⊢ ( [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ↔ 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) |
64 |
|
simp3 |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → 𝑣 = 𝑉 ) |
65 |
6
|
fveq2i |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
66 |
7 65
|
eqtr2i |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝐷 |
67 |
66
|
a1i |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝐷 ) |
68 |
|
simp2 |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → 𝑢 = 𝑈 ) |
69 |
68
|
fveq2d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( LSpan ‘ 𝑢 ) = ( LSpan ‘ 𝑈 ) ) |
70 |
69 5
|
eqtr4di |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( LSpan ‘ 𝑢 ) = 𝑁 ) |
71 |
|
simp1 |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → 𝑒 = 𝐸 ) |
72 |
71
|
sneqd |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → { 𝑒 } = { 𝐸 } ) |
73 |
70 72
|
fveq12d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) = ( 𝑁 ‘ { 𝐸 } ) ) |
74 |
70
|
fveq1d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) = ( 𝑁 ‘ { 𝑡 } ) ) |
75 |
73 74
|
uneq12d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) = ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) ) |
76 |
75
|
eleq2d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) ↔ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) ) ) |
77 |
76
|
notbid |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) ↔ ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) ) ) |
78 |
71
|
oteq1d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 = 〈 𝐸 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) |
79 |
71
|
fveq2d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) = ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐸 ) ) |
80 |
8
|
fveq1i |
⊢ ( 𝐽 ‘ 𝐸 ) = ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐸 ) |
81 |
79 80
|
eqtr4di |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) = ( 𝐽 ‘ 𝐸 ) ) |
82 |
81
|
oteq2d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → 〈 𝐸 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 = 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) |
83 |
78 82
|
eqtrd |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 = 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) |
84 |
83
|
fveq2d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) ) |
85 |
84
|
oteq2d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 = 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑡 〉 ) |
86 |
85
|
fveq2d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑡 〉 ) ) |
87 |
86
|
eqeq2d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ↔ 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) |
88 |
77 87
|
imbi12d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ↔ ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) |
89 |
64 88
|
raleqbidv |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ↔ ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) |
90 |
67 89
|
riotaeqbidv |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) = ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) |
91 |
64 90
|
mpteq12dv |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) = ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) |
92 |
91
|
eleq2d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ↔ 𝑎 ∈ ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) ) |
93 |
63 92
|
syl5bb |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ) → ( [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ↔ 𝑎 ∈ ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) ) |
94 |
41 43 47 93
|
syl3anc |
⊢ ( ( 𝑒 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ∧ 𝑢 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → ( [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ↔ 𝑎 ∈ ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) ) |
95 |
37 38 39 94
|
sbc3ie |
⊢ ( [ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 / 𝑒 ] [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ↔ 𝑎 ∈ ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) |
96 |
36 95
|
bitrdi |
⊢ ( 𝑤 = 𝑊 → ( [ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 / 𝑒 ] [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ↔ 𝑎 ∈ ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) ) |
97 |
96
|
abbi1dv |
⊢ ( 𝑤 = 𝑊 → { 𝑎 ∣ [ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 / 𝑒 ] [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) } = ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) |
98 |
|
eqid |
⊢ ( 𝑤 ∈ 𝐻 ↦ { 𝑎 ∣ [ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 / 𝑒 ] [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) } ) = ( 𝑤 ∈ 𝐻 ↦ { 𝑎 ∣ [ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 / 𝑒 ] [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) } ) |
99 |
97 98 4
|
mptfvmpt |
⊢ ( 𝑊 ∈ 𝐻 → ( ( 𝑤 ∈ 𝐻 ↦ { 𝑎 ∣ [ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 / 𝑒 ] [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡 ∈ 𝑣 ↦ ( ℩ 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧 ∈ 𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ 〈 𝑧 , ( 𝑖 ‘ 〈 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) } ) ‘ 𝑊 ) = ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) |
100 |
14 99
|
sylan9eq |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻 ) → 𝑆 = ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) |
101 |
11 100
|
syl |
⊢ ( 𝜑 → 𝑆 = ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑡 〉 ) ) ) ) ) |