Metamath Proof Explorer


Theorem hdmapval

Description: Value of map from vectors to functionals in the closed kernel dual space. This is the function sigma on line 27 above part 9 in Baer p. 48. We select a convenient fixed reference vector E to be <. 0 , 1 >. (corresponding to vector u on p. 48 line 7) whose span is the lattice isomorphism map of the fiducial atom P = ( ( ocK )W ) (see dvheveccl ). ( JE ) is a fixed reference functional determined by this vector (corresponding to u' on line 8; mapdhvmap shows in Baer's notation (Fu)* = Gu'). Baer's independent vectors v and w on line 7 correspond to our z that the A. z e. V ranges over. The middle term ( I<. E , ( JE ) , z >. ) provides isolation to allow E and T to assume the same value without conflict. Closure is shown by hdmapcl . If a separate auxiliary vector is known, hdmapval2 provides a version without quantification. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmapval.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmapfval.e 𝐸 = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩
hdmapfval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmapfval.v 𝑉 = ( Base ‘ 𝑈 )
hdmapfval.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmapfval.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmapfval.d 𝐷 = ( Base ‘ 𝐶 )
hdmapfval.j 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapfval.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
hdmapfval.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapfval.k ( 𝜑 → ( 𝐾𝐴𝑊𝐻 ) )
hdmapval.t ( 𝜑𝑇𝑉 )
Assertion hdmapval ( 𝜑 → ( 𝑆𝑇 ) = ( 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) )

Proof

Step Hyp Ref Expression
1 hdmapval.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmapfval.e 𝐸 = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩
3 hdmapfval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 hdmapfval.v 𝑉 = ( Base ‘ 𝑈 )
5 hdmapfval.n 𝑁 = ( LSpan ‘ 𝑈 )
6 hdmapfval.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
7 hdmapfval.d 𝐷 = ( Base ‘ 𝐶 )
8 hdmapfval.j 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
9 hdmapfval.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
10 hdmapfval.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
11 hdmapfval.k ( 𝜑 → ( 𝐾𝐴𝑊𝐻 ) )
12 hdmapval.t ( 𝜑𝑇𝑉 )
13 1 2 3 4 5 6 7 8 9 10 11 hdmapfval ( 𝜑𝑆 = ( 𝑡𝑉 ↦ ( 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) )
14 13 fveq1d ( 𝜑 → ( 𝑆𝑇 ) = ( ( 𝑡𝑉 ↦ ( 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) ‘ 𝑇 ) )
15 riotaex ( 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) ∈ V
16 sneq ( 𝑡 = 𝑇 → { 𝑡 } = { 𝑇 } )
17 16 fveq2d ( 𝑡 = 𝑇 → ( 𝑁 ‘ { 𝑡 } ) = ( 𝑁 ‘ { 𝑇 } ) )
18 17 uneq2d ( 𝑡 = 𝑇 → ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) = ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) )
19 18 eleq2d ( 𝑡 = 𝑇 → ( 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) ↔ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ) )
20 19 notbid ( 𝑡 = 𝑇 → ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) ↔ ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ) )
21 oteq3 ( 𝑡 = 𝑇 → ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ = ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ )
22 21 fveq2d ( 𝑡 = 𝑇 → ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) )
23 22 eqeq2d ( 𝑡 = 𝑇 → ( 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ↔ 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) )
24 20 23 imbi12d ( 𝑡 = 𝑇 → ( ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ↔ ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) )
25 24 ralbidv ( 𝑡 = 𝑇 → ( ∀ 𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ↔ ∀ 𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) )
26 25 riotabidv ( 𝑡 = 𝑇 → ( 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) = ( 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) )
27 eqid ( 𝑡𝑉 ↦ ( 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) = ( 𝑡𝑉 ↦ ( 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) )
28 26 27 fvmptg ( ( 𝑇𝑉 ∧ ( 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) ∈ V ) → ( ( 𝑡𝑉 ↦ ( 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) ‘ 𝑇 ) = ( 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) )
29 12 15 28 sylancl ( 𝜑 → ( ( 𝑡𝑉 ↦ ( 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) ‘ 𝑇 ) = ( 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) )
30 14 29 eqtrd ( 𝜑 → ( 𝑆𝑇 ) = ( 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) )