Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapfval.e |
⊢ 𝐸 = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ |
3 |
|
hdmapfval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hdmapfval.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
hdmapfval.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
6 |
|
hdmapfval.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
hdmapfval.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
8 |
|
hdmapfval.j |
⊢ 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmapfval.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
hdmapfval.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hdmapfval.k |
⊢ ( 𝜑 → ( 𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
hdmapval.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
13 |
1 2 3 4 5 6 7 8 9 10 11
|
hdmapfval |
⊢ ( 𝜑 → 𝑆 = ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) ) |
14 |
13
|
fveq1d |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑇 ) = ( ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) ‘ 𝑇 ) ) |
15 |
|
riotaex |
⊢ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) ∈ V |
16 |
|
sneq |
⊢ ( 𝑡 = 𝑇 → { 𝑡 } = { 𝑇 } ) |
17 |
16
|
fveq2d |
⊢ ( 𝑡 = 𝑇 → ( 𝑁 ‘ { 𝑡 } ) = ( 𝑁 ‘ { 𝑇 } ) ) |
18 |
17
|
uneq2d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) = ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ) |
19 |
18
|
eleq2d |
⊢ ( 𝑡 = 𝑇 → ( 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) ↔ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ) ) |
20 |
19
|
notbid |
⊢ ( 𝑡 = 𝑇 → ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) ↔ ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ) ) |
21 |
|
oteq3 |
⊢ ( 𝑡 = 𝑇 → ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ = ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) |
22 |
21
|
fveq2d |
⊢ ( 𝑡 = 𝑇 → ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) |
23 |
22
|
eqeq2d |
⊢ ( 𝑡 = 𝑇 → ( 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ↔ 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) |
24 |
20 23
|
imbi12d |
⊢ ( 𝑡 = 𝑇 → ( ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ↔ ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) ) |
25 |
24
|
ralbidv |
⊢ ( 𝑡 = 𝑇 → ( ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ↔ ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) ) |
26 |
25
|
riotabidv |
⊢ ( 𝑡 = 𝑇 → ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) = ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) ) |
27 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) = ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) |
28 |
26 27
|
fvmptg |
⊢ ( ( 𝑇 ∈ 𝑉 ∧ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) ∈ V ) → ( ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) ‘ 𝑇 ) = ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) ) |
29 |
12 15 28
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑡 ∈ 𝑉 ↦ ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑡 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) ‘ 𝑇 ) = ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) ) |
30 |
14 29
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑇 ) = ( ℩ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) ) |