Metamath Proof Explorer


Theorem hdmapval2

Description: Value of map from vectors to functionals with a specific auxiliary vector. TODO: Would shorter proofs result if the .ne hypothesis were changed to two =/= hypothesis? Consider hdmaplem1 through hdmaplem4 , which would become obsolete. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmapval2.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmapval2.e 𝐸 = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩
hdmapval2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmapval2.v 𝑉 = ( Base ‘ 𝑈 )
hdmapval2.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmapval2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmapval2.d 𝐷 = ( Base ‘ 𝐶 )
hdmapval2.j 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapval2.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
hdmapval2.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapval2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmapval2.t ( 𝜑𝑇𝑉 )
hdmapval2.x ( 𝜑𝑋𝑉 )
hdmapval2.ne ( 𝜑 → ¬ 𝑋 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) )
Assertion hdmapval2 ( 𝜑 → ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝑋 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑋 ⟩ ) , 𝑇 ⟩ ) )

Proof

Step Hyp Ref Expression
1 hdmapval2.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmapval2.e 𝐸 = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩
3 hdmapval2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 hdmapval2.v 𝑉 = ( Base ‘ 𝑈 )
5 hdmapval2.n 𝑁 = ( LSpan ‘ 𝑈 )
6 hdmapval2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
7 hdmapval2.d 𝐷 = ( Base ‘ 𝐶 )
8 hdmapval2.j 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
9 hdmapval2.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
10 hdmapval2.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
11 hdmapval2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 hdmapval2.t ( 𝜑𝑇𝑉 )
13 hdmapval2.x ( 𝜑𝑋𝑉 )
14 hdmapval2.ne ( 𝜑 → ¬ 𝑋 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) )
15 eqidd ( 𝜑 → ( 𝑆𝑇 ) = ( 𝑆𝑇 ) )
16 1 3 4 6 7 10 11 12 hdmapcl ( 𝜑 → ( 𝑆𝑇 ) ∈ 𝐷 )
17 1 2 3 4 5 6 7 8 9 10 11 12 16 hdmapval2lem ( 𝜑 → ( ( 𝑆𝑇 ) = ( 𝑆𝑇 ) ↔ ∀ 𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) )
18 15 17 mpbid ( 𝜑 → ∀ 𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) )
19 eleq1 ( 𝑧 = 𝑋 → ( 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ↔ 𝑋 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ) )
20 19 notbid ( 𝑧 = 𝑋 → ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ↔ ¬ 𝑋 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ) )
21 oteq1 ( 𝑧 = 𝑋 → ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ = ⟨ 𝑋 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ )
22 oteq3 ( 𝑧 = 𝑋 → ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ = ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑋 ⟩ )
23 22 fveq2d ( 𝑧 = 𝑋 → ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) = ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑋 ⟩ ) )
24 23 oteq2d ( 𝑧 = 𝑋 → ⟨ 𝑋 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ = ⟨ 𝑋 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑋 ⟩ ) , 𝑇 ⟩ )
25 21 24 eqtrd ( 𝑧 = 𝑋 → ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ = ⟨ 𝑋 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑋 ⟩ ) , 𝑇 ⟩ )
26 25 fveq2d ( 𝑧 = 𝑋 → ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑋 ⟩ ) , 𝑇 ⟩ ) )
27 26 eqeq2d ( 𝑧 = 𝑋 → ( ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ↔ ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝑋 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑋 ⟩ ) , 𝑇 ⟩ ) ) )
28 20 27 imbi12d ( 𝑧 = 𝑋 → ( ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ↔ ( ¬ 𝑋 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝑋 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑋 ⟩ ) , 𝑇 ⟩ ) ) ) )
29 28 rspccv ( ∀ 𝑧𝑉 ( ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) → ( 𝑋𝑉 → ( ¬ 𝑋 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝑋 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑋 ⟩ ) , 𝑇 ⟩ ) ) ) )
30 18 13 14 29 syl3c ( 𝜑 → ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝑋 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑋 ⟩ ) , 𝑇 ⟩ ) )