| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapcl.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapcl.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmapcl.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmapcl.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hdmapcl.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 6 |  | hdmapcl.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | hdmapcl.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 8 |  | hdmapcl.t | ⊢ ( 𝜑  →  𝑇  ∈  𝑉 ) | 
						
							| 9 |  | eqid | ⊢ 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉  =  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 | 
						
							| 10 |  | eqid | ⊢ ( LSpan ‘ 𝑈 )  =  ( LSpan ‘ 𝑈 ) | 
						
							| 11 |  | eqid | ⊢ ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 12 |  | eqid | ⊢ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 13 | 1 9 2 3 10 4 5 11 12 6 7 8 | hdmapval | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑇 )  =  ( ℩ ℎ  ∈  𝐷 ∀ 𝑦  ∈  𝑉 ( ¬  𝑦  ∈  ( ( ( LSpan ‘ 𝑈 ) ‘ { 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } )  ∪  ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) )  →  ℎ  =  ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 𝑦 ,  ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ) ,  𝑦 〉 ) ,  𝑇 〉 ) ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 15 |  | eqid | ⊢ ( LSpan ‘ 𝐶 )  =  ( LSpan ‘ 𝐶 ) | 
						
							| 16 |  | eqid | ⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 18 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 19 | 1 17 18 2 3 14 9 7 | dvheveccl | ⊢ ( 𝜑  →  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 20 | 1 2 3 14 10 4 15 16 11 7 19 | mapdhvmap | ⊢ ( 𝜑  →  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } ) )  =  ( ( LSpan ‘ 𝐶 ) ‘ { ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ) } ) ) | 
						
							| 21 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 22 | 1 2 3 14 4 5 21 11 7 19 | hvmapcl2 | ⊢ ( 𝜑  →  ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 )  ∈  ( 𝐷  ∖  { ( 0g ‘ 𝐶 ) } ) ) | 
						
							| 23 | 22 | eldifad | ⊢ ( 𝜑  →  ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 )  ∈  𝐷 ) | 
						
							| 24 | 1 2 3 14 10 4 5 15 16 12 7 20 19 23 8 | hdmap1eu | ⊢ ( 𝜑  →  ∃! ℎ  ∈  𝐷 ∀ 𝑦  ∈  𝑉 ( ¬  𝑦  ∈  ( ( ( LSpan ‘ 𝑈 ) ‘ { 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } )  ∪  ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) )  →  ℎ  =  ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 𝑦 ,  ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ) ,  𝑦 〉 ) ,  𝑇 〉 ) ) ) | 
						
							| 25 |  | riotacl | ⊢ ( ∃! ℎ  ∈  𝐷 ∀ 𝑦  ∈  𝑉 ( ¬  𝑦  ∈  ( ( ( LSpan ‘ 𝑈 ) ‘ { 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } )  ∪  ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) )  →  ℎ  =  ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 𝑦 ,  ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ) ,  𝑦 〉 ) ,  𝑇 〉 ) )  →  ( ℩ ℎ  ∈  𝐷 ∀ 𝑦  ∈  𝑉 ( ¬  𝑦  ∈  ( ( ( LSpan ‘ 𝑈 ) ‘ { 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } )  ∪  ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) )  →  ℎ  =  ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 𝑦 ,  ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ) ,  𝑦 〉 ) ,  𝑇 〉 ) ) )  ∈  𝐷 ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝜑  →  ( ℩ ℎ  ∈  𝐷 ∀ 𝑦  ∈  𝑉 ( ¬  𝑦  ∈  ( ( ( LSpan ‘ 𝑈 ) ‘ { 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } )  ∪  ( ( LSpan ‘ 𝑈 ) ‘ { 𝑇 } ) )  →  ℎ  =  ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 𝑦 ,  ( ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ) ,  𝑦 〉 ) ,  𝑇 〉 ) ) )  ∈  𝐷 ) | 
						
							| 27 | 13 26 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑇 )  ∈  𝐷 ) |